top of page

Resultados da busca

66 results found with an empty search

  • Simpósio Brasileiro de Genética Molecular de Plantas

    Exploring Innovation in Plat Genetics fora Sustanible Agriculture < Back Simpósio Brasileiro de Genética Molecular de Plantas 27 - 30 May 2025 O Simpósio Brasileiro de Genética Molecular de Plantas (VIII SBGMP) é um evento de frequência bianual realizado desde 2007. Iniciativa de pesquisadores da área vegetal de diversas regiões do Brasil e apoiado pela Sociedade Brasileira de Genética (SBG). O IX SBGMP será realizado em maio de 2025, em Búzios no Rio de Janeiro.

  • 500 | inctplantstress

    Time Out This page isn’t available right now. But we’re working on a fix, ASAP. Try again soon. Go Back

  • Dissertations and Thesis | inctplantstress

    Get to know the works developed by the students of masters and doctoral degrees participating in the INCT PlantStress Biotech. Publications Dissertations and Thesis Ph.D. dissertation Erica de Castro Costa. Mecanismos de Defesa em Musa spp. à Murcha de Fusarium: Análises Histológicas e Transcritômicas da Interação Musa acuminata subsp. burmannica acesso ‘Calcutta 4’ à Fusarium oxysporum f. sp. cubense Raça Subtropical 4. 2025. Ph.D. dissertation (Ph.D. in Phytopathology) - Universidade de Brasília. Advisor: Robert Neil Gerard Miller. Nayara Sabrina de Freitas Alves. Functional validation of novel molecules and CRISPR approaches for soybean tolerance to root-knot nematodes. 2024. Ph.D. dissertation (Ph.D. in Biotechnological Processes) - Universidade Federal do Paraná. Advisor: Maria Fatima Grossi-de-Sa. Valdeir Junio Vaz Moreira. Integrando o silenciamento gênico dos efetores Minc03328 e Minc16803 à superexpressão da proteína Germin-like protein 10: Potencial abordagem para o controle de Meloidogyne incognita . 2024. Ph.D. dissertation (Ph.D. in Molecular Biology) - Universidade de Brasília. Advisor: Maria Fatima Grossi-de-Sa. Deziany da Silva Ferreira. Avaliação in planta de genes oriundos de espécies silvestres de Arachis potencialmente envolvidos na resistência a Sclerotinia sclerotiorum . 2024. Ph.D. dissertation (Ph.D. in Phytopathology) - Universidade de Brasília. Advisor: Robert Neil Gerard Miller. Roberta de Paula Saturnino Costa. Caracterização de genes essencias de Ppachyrhizi. 2024. Ph.D. dissertation (Ph.D. in Genetics and Molecular Biology) - Universidade Estadual de Londrina. Advisor: Francismar Corrêa Marcelino-Guimarães. Alice Utiyama. Caracterização de alvos de efetores de P. pachyrhizi na soja. 2024. Ph.D. dissertation (Ph.D. in Genetics and breeding) - Universidade Federal de Viçosa. Co-Advisor: Francismar Corrêa Marcelino-Guimarães. Dania Pereira Lobaina. Interação entre a ATE de Gossypium hirustum e proteínas do cotton leafroll dwarf virus . 2024. Ph.D. dissertation (Ph.D. in Vegetal Biotechnology and Bioprocess) - Universidade Federal do Rio de Janeiro. Advisor: Maite Vaslin de Freitas Silva. Amanda Cristina de Araújo. Ectopic expression of a truncated NLR gene from wild Arachis enhances resistance to Fusarium oxysporum . 2024. Ph.D. dissertation (Biological Sciences (Molecular Biology)) - Universidade de Brasília. Advisor: Patricia Messenberg Guimaraes. Dezyany Ferreira. A wild Arachis endochitinase enhances Sclerotinia resistance in transgenic plants. 2024. Ph.D. dissertation (Ph.D. in Biological Sciences (Molecular Biology)) - Universidade de Brasília. Advisor: Patricia Messenberg Guimaraes. Kellyane da Rocha Mendes. Salt stress is regulated by interactions with heat and spatiotemporal changes in rice plants. 2024. Ph.D. dissertation (Ph.D. in Soil science) - Universidade Federal do Ceará. Advisor: Joaquim Albenisio Gomes da Silveira. Danny Alexander Camargo León. Roots and leaves display contrasting metabolic and physiological responses to drought and recovery in cowpea. 2024. Ph.D. dissertation (Ph.D. in Biochemistry) - Universidade Federal do Ceará. Advisor: Joaquim Albenisio Gomes da Silveira. Erica Cristina Silva Rego. Caracterização de mirnas na interação Musa acuminata-mycosphaerella musicola . 2023. Ph.D. dissertation (Ph.D. in Biological Sciences (Molecular Biology)) - Universidade de Brasília. Advisor: Robert Neil Gerard Miller. Rikaely Torres de Sousa. Mechanisms of ammonium toxicity and tolerance in rice plants. 2023. Ph.D. dissertation (Ph.D. in Biochemistry) - Universidade Federal do Ceará. Advisor: Joaquim Albenisio Gomes da Silveira. Vicente Thiago Candido Barros Alencar. Knockout in PIF14 induces interruptions in starch synthesis, affecting seed formation and development of rice plants. 2023. Ph.D. dissertation (Ph.D. in Biochemistry) - Universidade Federal do Ceará. Advisor: Joaquim Albenisio Gomes da Silveira. Adriel Silva. Desenvolvimento de um painel de SNPs para aplicações no melhoramento genetico molecular com base no germoplasma brasileiro da soja. 2023. Ph.D. dissertation (Ph.D. in Genetics and breeding) - Universidade Federal de Viçosa. Co-advisor: Francismar Corrêa Marcelino-Guimarães. Daniel David Noriega Vasquez. Estratégias para aumentar a eficiência do RNA interferente visando o controle de lagarta Helicoverpa armigera e do bicudo do algodoeiro, Anthonomus grandis, pragas do algodão no Brasil. 2022. Ph.D. dissertation (Ph.D. in Genomic Sciences and Biotechnology) - Universidade Católica de Brasília. Advisor: Maria Fatima Grossi-de-Sa. Caroline de Barros Montebianco. Papel da peptidogalactomanana de Cladosporium herbarum na indução de defesa contra vírus em plantas. 2021. Ph.D. dissertation (Ph.D. in Sciences (Microbiology) - Universidade Federal do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico. Advisor: Maite Vaslin de Freitas Silva. José Leonardo Santos Jimenez. Bioestimulação e indução de defesa em diferentes genótipos de maracujá sob condições de casa de vegetação e campo. 2021. Ph.D. dissertation (Ph.D. in Vegetal Biotechnology and Bioprocess) - Universidade Federal do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico. Advisor: Maite Vaslin de Freitas Silva. Diogo Martins-de-Sa. Functional and Evolutionary investigation of proteins using structure-based sequence alignment and comparative structure modeling. 2021. Ph.D dissertation (Ph.D. in Molecular Biology) - Universidade de Brasília. Advisor: Maria Fatima Grossi-de-Sa. Rafael Nomura. Análise funcional de candidatos a efetores de Pratylenchus brachyurus em soja via estratégias de RNAi e predição das proteínas-alvo no hospedeiro. 2021. Ph.D dissertation (Ph.D in Biotechnology) - Universidade Estadual de Londrina. Advisor: Francismar Corrêa Marcelino-Guimaraes. Tamires de Souza Rodrigues. Caracterização molecular da resposta de plantas C4 às mudanças climáticas: CO2 atmosférico elevado combinado ao déficit hídrico. 2021. Ph.D. dissertation (Ph.D. in Plant Biotechnology) - Universidade Federal do Rio de Janeiro. Advisor: Marcio Alves Ferreira. Ana Gabriela Borges Leite. Novas biomoléculas potencialmente aplicadas no controle de Anthonomus grandis , via RNA interferente . 2020. Ph.D. dissertation (Ph.D. in Biological Sciences (Molecular Biology)) - Universidade de Brasília. Advisor: Maria Fatima Grossi de Sa. Cezar Augusto Verdi. Estratégias para o desenvolvimento de híbridos de trigo com base no germoplasma brasileiro. 2020. Ph.D. dissertation (Ph.D. in Agronomy) - Universidade Federal de Pelotas. Advisor: Antônio Costa de Oliveira. Clidia Eduarda Moreira Pinto. Transcriptoma do intestino de Anthonomus grandis : Identificação e validação de genes na disgestão e defesa imune. 2020. Ph.D. dissertation (Ph.D. in Biological Sciences (Molecular Biology)) - Universidade de Brasília. Advisor: Maria Fatima Grossi de Sa. Reneida Aparecida Godinho Mendes. Validação de moléculas efetores potencialmente aplicadas no controle da meloidoginose. 2020. Ph.D. dissertation (Ph.D. in Biotechnology and Biodiversity - Pró-Centro-Oeste Network) - Universidade de Brasília. Advisor: Maria Fatima Grossi de Sa. Mariana Collodetti Bernardino. Avaliação da indução de resistência sistêmica adquirida (SAR) em plantas de tabaco quando elicitadas com glicoconjugados de F. oxysporum. 2020. Ph.D dissertation (Ph.D in Sciences (Microbiology)) - Universidade Federal do Rio de Janeiro, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. Coadvisor: Maite Vaslin de Freitas Silva. Fabricio Barbosa Monteiro Arraes. Genomic and transcriptomic analysis applied to biotecnology: emphasis on biotic and abiotic stresses. 2020. Ph.D. dissertation (Ph.D. in Cellular and Molecular Biology) - Universidade Federal do Rio Grande do Sul. Advisor: Maria Fatima Grossi de Sa. Liz Nathalia Ibarra Duarte. Clonagem, expressão recombinante e atividade de enzimas de insetos-praga, visando à degradação de biomassa vegetal. 2020. Ph.D. dissertation (Ph.D. in Biotechnological Processes) - Universidade Federal do Paraná. Advisor: Maria Fatima Grossi de Sa. Bruno Paes de Melo. Transcriptional modulation and characterization of plant-specific trans-acting factors in abiotic stress responses. 2020. Ph.D. dissertation (Ph.D. in Agricultural Biochemistry) - Universidade Federal de Viçosa. Co-Advisor: Maria Fatima Grossi de Sa. Tatiana David Miranda Pinheiro. Identificação e caracterização de componentes genéticos de resistência em Musa acuminata a Pseudocercospora musae . 2020. Ph.D. dissertation (Ph.D. in Biological Sciences (Molecular Biology)) - Universidade de Brasília. Advisor: Robert Neil Gerard Miller. Camila dos Santos Alves. Caracterização de genótipos de arroz quanto à resposta ao herbicida do grupo químico das imidazolinonas e desenvolvimento de parte aérea e raiz. 2019. Ph.D. dissertation (Ph.D. in Agronomy) - Universidade Federal de Pelotas. Advisor: Antônio Costa de Oliveira. Liamara Bahr. Comparação e seleção de populações de trigo: componentes de rendimento, qualidade industrial e resistência a giberela. 2019. Ph.D. dissertation (Ph.D. in Agronomy) - Universidade Federal de Pelotas. Advisor: Antônio Costa de Oliveira. Renata Juliana Ahlert. Seleção genômica em arroz irrigado para tolerância ao frio no sul do brasil. 2019. Ph.D. dissertation (Ph.D. in Agronomy) - Universidade Federal de Pelotas. Advisor: Antônio Costa de Oliveira. Rayssa Almeida Garcia. Estratégias para aumentar a eficiência de dsRNA no silenciamento gênico no bicudo-do-algodoeiro, Anthonomus grandis . 2019. Ph.D. dissertation (Ph.D. in Biological Sciences (Molecular Biology)) - Universidade de Brasília. Advisor: Maria Fatima Grossi de Sa. Sarah Muniz Nardeli. Desenvolvimento floral em algodão (Gossypium hirsutum ) e respostas ao estresse biótico. 2019. Ph.D. dissertation (Ph.D. in Biological Sciences (Genetics)) - Universidade Federal do Rio de Janeiro. Advisor: Marcio Alves Ferreira. Stéfanie Menezes De Moura. Caracterização anatômica e molecular do desenvolvimento floral de algodão (Gossypium hirsutum ) e a identificação de genes e promotores responsivos ao estresse biótico causado pelo inseto-praga bicudo-do-algodoeiro (Anthonomus grandis ). 2019. Ph.D. dissertation (Ph.D. in Plant Biotechnology) - Universidade Federal do Rio de Janeiro. Advisor: Marcio Alves Ferreira. Suellen Mika Hishinuma Silva. Caracterização funcional do gene GmHsp22.4 de soja envolvido na resposta de resistência a Meloidogyne javanica e identificação de proteínas efetoras de nematoides sedentários envolvidos na interação com a soja. 2019. Ph.D. dissertation (Ph.D. in Biotechnology) - Universidade Estadual de Londrina. Advisor: Francismar Corrêa Marcelino-Guimaraes. Ana Paula Zotta Mota. A study of molecular responses to abiotic and biotic stresses in Arachis . 2019. Ph.D. dissertation (Ph.D. in Cellular and Molecular Biology) - Universidade Federal do Rio Grande do Sul. Advisor: Maria Fatima Grossi de Sa. Andressa da Cunha Quintana Martins. Transcritômica e proteômica aplicadas à prospecção de genes candidatos envolvidos na resposta de defesa aos estresses biótico e abiótico em Arachis spp . 2019. Ph.D. dissertation (Ph.D. in Molecular Biology) - Universidade de Brasília. Advisor: Robert Neil Gerard Miller. Clemente Batista Soares Neto. Degradação de gossipol por macrofungos e análise do secretoma de Panus lecomtei durante crescimento em caroço de algodão . 2019. Ph.D. dissertation (Ph.D. in Molecular Biology) - Universidade de Brasília. Advisor: Robert Neil Gerard Miller. Taísa Godoy Gomes. Expressão diferencial de genes associados à degradação enzimática e detoxificação de torta de pinhão-manso em Pleurotus pulmonarius . 2019. Ph.D. dissertation (Ph.D. in Biologia Molecular) - Universidade de Brasília. Advisor: Robert Neil Gerard Miller. Elinea de Oliveira Freitas. Isolamento e caracterização de promotores induzíveis em resposta a estresses biótico e abiótico . 2019. Ph.D. dissertation (Ph.D. in Biotechnology and Biodiversity - Pró-Centro-Oeste Network) - Universidade de Brasília. Advisor: Maria Fatima Grossi de Sa. Hudson Fernando Nunes Moura. Transcriptoma de Helicoverpa armigera (Lepidoptera: noctidae): Interação com hospedeiros e identificação de alvos biotecnológicos para o controle do inseto . 2019. Ph.D. dissertation (Ph.D. in Biological Sciences (Molecular Biology)) - Universidade de Brasília. Advisor: Maria Fatima Grossi de Sa. Joaquin Felipe Paixão Roca. Control biotechnology improvement of plants against biotic and abiotic stresses: use of CRISPR/dCas9 transcriptional regulation and transgenic cotton. 2018. Ph.D. dissertation (Ph.D. in Biotechnology and Biodiversity - Pró-Centro-Oeste Network) - Universidade de Brasília. Advisor: Maria Fatima Grossi de Sa. Thuanne Pires Ribeiro. Desenvolvimento de variedade brasileira de algodão altamente resistente ao bicudo-do-algodoeiro. 2018. Ph.D. dissertation (Ph.D. in Biotechnology and Biodiversity - Pró-Centro-Oeste Network) - Universidade de Brasília. Advisor: Maria Fatima Grossi de Sa. Guilherme Souza Prado. Estratégias biotecnológicas baseadas em engenharia genética de plantas para a produção de moléculas com potencial de aplicação na agricultura e saúde humana . 2018. Ph.D. dissertation (Ph.D. in Genomic Sciences and Biotechnology) - Universidade Católica de Brasília. Advisor: Maria Fatima Grossi de Sa. Peyman Habibi. Production of novel HIV entry inhibitor griffthsin in Nicotiana benthamiana and Moss Systems. 2018. Ph.D. dissertation (Ph.D. in Biotechnological Processes) - Universidade Federal do Paraná. Advisor: Maria Fatima Grossi de Sa. Jean C. Alekcevetch. Genome wide association study of resistance to Meloidogyne javanica in soybean and potential genes involved in the resistance . 2018. Ph.D. dissertation (Ph.D. in Genetics and Molecular Biology) - Universidade Estadual de Londrina. Co-Advisor: Francismar C. Marcelino-Guimarães. Nicia Eloisa da Gama Junqueira. Morfologia e fenologia do desenvolvimento de Setaria viridis (L.) Beauvois (Poaceae) para modelo de estudo de Genetics funcional em plantas C4. 2018. Ph.D. dissertation (Ph.D. in Plant Biotechnology) - Universidade Federal do Rio de Janeiro. Co-Advisor: Marcio Alves Ferreira. Angelina Maria Moreschi Basso. Caracterização do potencial imunomodulador de polissacarídeo de basidiomicetos e aplicação em modelo de infecção fúngica experimental. 2017. Ph.D. dissertation (Ph.D. in Molecular Pathology) - Universidade de Brasília. Co-Advisor: Maria Fatima Grossi de Sa. Luciana Harumi Morimoto Figueiredo. Biotecnologia e biodiversidade agropecuária: panorama patentário e oportunidade para a Região Centro-Oeste . 2017. Ph.D. dissertation (Ph.D. in Biotechnology and Biodiversity - Pró-Centro-Oeste Network) - Universidade de Brasília. Advisor: Maria Fatima Grossi de Sa. Marta Bencke Malato. Respostas moleculares da soja (Glycine max ) a concentrações elevadas de CO2 combinadas ao déficit hídrico e transformação Genetics de soja com um gene que confere tolerância à seca. 2017. Ph.D. dissertation (Ph.D. in Biological Sciences (Genetics)) - Universidade Federal do Rio de Janeiro. Advisor: Marcio Alves Ferreira. Master's thesis Gabriele Louise Trindade Araujo. Superexpressão dos genes Gmglb-1 e GmEXPA-1 aplicada no aumento de tolerância de plantas de algodão a Meloidogne incognita. 2024. Master's thesis (Master in Genomic Sciences and Biotechnology) - Universidade Católica de Brasília, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. Advisor: Maria Fatima Grossi-de-Sa. Julia Moura do Rosário Santana. Expressão heteróloga de novas toxinas Cry em diferentes sistemas para controle do bicudo-do-algodoeiro. 2024. Master's thesis (Master in Genomic Sciences and Biotechnology) - Universidade Católica de Brasília, Conselho Nacional de Desenvolvimento Científico e Tecnológico. Advisor: Maria Fatima Grossi-de-Sa. Luciano de Medeiros Dantas. Identificação e caracterização de novas sequências regulatórias com potencial biotecnológico para controle de lepdópteros em algodão. 2024. Master's thesis (Master in Natural Sciences and Biotechnology) - Universidade Federal de Campina Grande. Advisor: Maria Fatima Grossi-de-Sa. Lucas Santos Bastos. Análise transcritômica da resposta ao “cross-stress” em Musa acuminata durante déficit hídrico e infecção pelo nematoide das galhas Meloidogyne incognita . 2024. Master's thesis (Master in Phytopathology) - Universidade de Brasília. Advisor: Robert Neil Gerard Miller. Rennan Augusto dos Santos Pinto. Caracterização de eventos de iRNA para resistência a patogenos de soja. 2024. Master's thesis (Master in Genetics and Molecular Biology) - Universidade Estadual de Londrina. Advisor: Francismar Corrêa Marcelino-Guimarães. João Marcos Fernandes Esteves. Caracterização das famílias gênicas de Histona-acetiltransferases de Setaria viridis (L.) P. Beauv. sob condições de estresse abiótico. 2024 Master's thesis (Master in Biological Sciences (Genetics)) - Universidade Federal do Rio de Janeiro. Advisor: Marcio Alves Ferreira. Matheus França. Caracterização das respostas morfo-fisiológicas em Setaria viridis após infecção de bactérias endofíticas. 2023. Master's thesis (Master in Biological Sciences (Genetics)) - Universidade Federal do Rio de Janeiro. Advisor: Marcio Alves Ferreira. Jailma Souza Thomaz. Seleção de linhagens de algodoeiro em condições de sequeiro no agreste paraibano. 2023. Master's thesis (Master in Agricultural science) - Universidade Estadual da Paraíba. Advisor: José Jaime Vasconcelos Cavalcanti. Severino Moreira da Silva. Híbridos de algodoeiro tolerantes ao estresse hídrico. 2023. Master's thesis (Master in Agricultural science) - Universidade Estadual da Paraíba. Advisor: José Jaime Vasconcelos Cavalcanti. Gustavo Caséca Ruffo. Desenvolvimento e otimização de protocolo para edição de genomas livre de DNA em soja via bombardeamento de ribonucleopriteínas do sistema CRISPR/Cas. 2023. Master's thesis (Master in Biotechnology) - Universidade Católica de Brasília. Advisor: Maria Fatima Grossi-de-Sa. Ana Luisa Atella. Isolamento e caracterização de dois promotores de algodão (Gossypium hirsutum ): Novas ferramentas biotecnológicas para o controle de pragas. 2022. Master's thesis (Master in Biological Sciences - Genetics) - Universidade Federal do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico. Advisor: Marcio Alves Ferreira. Guilherme Henrique Moss Barreto Corrêa de Oliveira. Prospecção de genes e moléculas visando a resistência a Pseudocercospora musae e tolerância ao déficit hídrico em Musa spp. 2022. Master's thesis (Master in Biological Sciences - Molecular Biology) - Universidade de Brasília. Advisor: Robert Neil Gerard Miller. Juan David Gomes. Setaria viridis: tranformação genética e fenologia do acesso ME034V de acordo com a escalaBBCH de desenvolvimento. 2022. Master's thesis (Master in Plant Biotechnology and Bioprocess) - Universidade Federal do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico. Advisor: Marcio Alves Ferreira. Gabriella Cavalcante Amorim. Derivados da toxina Cry10Aa aplicados ao controle de insetos-praga e mastite bovina. 2022. Master's thesis (Master degree in genomic Sciences and Biotechnology) - Universidade de Brasília. Advisor: Maria Fatima Grossi-de-Sa. João Travassos Lins. Avaliação da resposta de memória ao déficit hídrico da monocotiledônea modelo Setaria viridis. 2022. Master's thesis (Master in Biological Sciences - Genetics) - Universidade Federal do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico. Advisor: Marcio Alves Ferreira. Alex Moura. Caracterização de um conjunto de genes identificado no transcriptoma de algodão e seu perfil de expressão nas fases iniciais da doença azul do algodoeiro. 2021. Master's thesis (Master degree in Sciences (Microbiology)) - Universidade Federal do Rio de Janeiro. Advisor: Maite Vaslin de Freitas Silva. Amanda Baseggio. Protocolos de avaliação da resistência do trigo (Triticum aestivum l.) à brusone e caracterização de genótipos em diferentes ambientes. 2021. Master’s thesis (Master degree in Agronomy) - Universidade Federal de Pelotas. Advisor: Antônio Costa de Oliveira. Ana Karina Frank Bastidas. Caracterização fenotípica da germinação na pré-colheita em trigo em uma população de linhagens endogâmicas recombinantes. 2019. Master’s thesis (Master degree in Agronomy) - Universidade Federal de Pelotas. Advisor: Antônio Costa de Oliveira. Diana Marcela Hernández Hernández. Caracterização de famíliasmutantes de arroz (Oryza sativa l.) irrigado para tolerância a toxidez direta ao excesso de ferro em hidroponia. 2021. Master’s thesis (Master degree in Agronomy) - Universidade Federal de Pelotas. Advisor: Antônio Costa de Oliveira. Giordano Gelain Conte. Meta-análise de locos de caracteres quantitativos (QTL) para resistência à Magnophorte oryzae em trigo. 2021. Master’s thesis (Master degree in Agronomy) - Universidade Federal de Pelotas. Advisor: Antônio Costa de Oliveira. Jennifer Luz Lopes. Caracterização, estimativa de parâmetros genéticos e seleção em família f6 de arroz. 2019. Master’s thesis (Master degree in Agronomy) - Universidade Federal de Pelotas. Advisor: Antônio Costa de Oliveira. Jennifer Villavicencio Huamani. Caracterização de genotipos brasileiros de trigo (Triticum aestivum l.) quanto a caracteres agronômicos e resistência tipo ii à giberela. 2021. Master’s thesis (Master degree in Agronomy) - Universidade Federal de Pelotas. Advisor: Antônio Costa de Oliveira. Luanna Pinheiro de Albuquerque Freitas Bezerra. Validação do sistema CRISPRa para a modulação transcricional de GmBiP. 2021. Master´s thesis (Master degree in Genomic Sciences and Biotechnology) - Universidade Católica de Brasília. Advisor: Maria Fatima Grossi-de-Sa. Valéria de Oliveira Nizoli. Fenotipagem de caracteres associados à resistência à brusone no trigo (Triticum aestivum l.) brasileiro. 2021. Master’s thesis (Master degree in Agronomy) - Universidade Federal de Pelotas. Advisor: Antônio Costa de Oliveira. Paolo Lucas Rodrigues Silva. Validação in planta de potenciais genes no controle de fitonematoides, via tecnologia de RNA interferente. 2020. Master´s thesis (Master in Genomic Sciences and Biotechnology) - Universidade Católica de Brasília. Advisor: Maria Fatima Grossi-de-Sa. Josiane Vargas de Oliveira Maximino. Avaliação e seleção de famílias de aveia branca (Avena sativa l.) de diferentes cruzamentos. 2020. Master’s thesis (Master degree in Agronomy) - Universidade Federal de Pelotas. Advisor: Antônio Costa de Oliveira. Raymond Joseph. Caracterização de mutantes m3 de arroz derivadas da cultivar BRS pampeira sob déficit hídrico. 2021. Master’s thesis (Master degree in Agronomy) - Universidade Federal de Pelotas. Advisor: Antônio Costa de Oliveira. Tiago Corazza da Rosa. Cruzamentos dialélicos entre linhagens de milho crioulo. 2019. Master’s thesis (Master degree in Agronomy) - Universidade Federal de Pelotas. Advisor: Maicon Nardino. Victoria Freitas de Oliveira. Mapeamento associativo para tolerância à salinidade em germoplasma brasileiro de arroz. 2019. - Master’s thesis (Master degree in Agronomy) - Universidade Federal de Pelotas. Advisor: Camila Pegoraro. Paolo Lucas Rodrigues Silva. Validação in planta de potenciais genes no controle de fitonematoides, via tecnologia de RNA interferente . 2020. Master's thesis (Master degree in Genomic Sciences and Biotechnology) - Universidade Católica de Brasília. Advisor: Maria Fatima Grossi de Sa. Amanda Cristina de Araújo. Caracterização de genes envolvidos em respostas ao estresse biótico nas espécies diploides selvagens Arachis stenosperma e Musa acuminata Calcutta 4. 2020. Master’s thesis (Master degree in Phytopathology) - Universidade de Brasília. Advisor: Robert Neil Gerard Miller. Micheline do Amaral Dias. Seleção de acessos de feijão-caupi resistentes ao nematoide das galhas (Meloidogyne spp.) . 2020. Master’s thesis (Master degree in Phytopathology) - Universidade de Brasília. Advisor: Robert Neil Gerard Miller. Latoia Eduarda Maltzahn. Perfil transcricional e regulação de genes relacionados à autofagia em plântulas de arroz cultivadas sob excesso de ferro. 2019. Master’s thesis (Master degree in Agronomy) - Universidade Federal de Pelotas. Advisor: Camila Pegoraro. Luis Herminio Chairez Tejeda. Déficit hídrico em milho: aspectos morfológicos e moleculares. 2019. Master’s thesis (Master degree in Agronomy) - Universidade Federal de Pelotas. Advisor: Camila Pegoraro. Valdeir Junio Vaz Moreira. Uso do RNA de interferência para a validação funcional de genes de parasitismo do fitonematoide Meloidogyne incognita . 2019. Master’s thesis (Master degree in Cellular and Molecular Biology) - Universidade Federal do Rio Grande do Sul. Advisor: Maria Fatima Grossi de Sa. Helena Ribeiro Barbosa. Analise do transcriptoma dos principais estadios de desenvolvimento da broca-do-café (Hypothenemus hampei ) e avaliação de potenciais genes alvos aplicados ao seu controle. 2019. Master’s thesis (Master degree in Cellular and Molecular Biology) - Universidade Federal do Rio Grande do Sul. Advisor: Maria Fatima Grossi de Sa. Alvaro Lorenço Ortolan Salles Filho. Aplicação de nanoformulações no silenciamento gênico em insetos e transformação de plantas. 2019. Master’s thesis (Master degree in Genomic Sciences and Biotechnology) - Universidade Católica de Brasília. Advisor: Maria Fatima Grossi de Sa. Daiane Medeiros de Oliveira. Produção e purificação do peptídeo hemopressina com potencial farmacológico. 2018. Master’s thesis (Master degree in Pharmaceutical Sciences) - Universidade de Brasília. Advisor: Maria Fatima Grossi de Sa. Dagna Maria Laurindo da Silva. Transformação genética de uma variedade brasileira de algodão para controle do Bicudo-do-Algodoeiro. 2018. Master’s thesis (Master degree in Biological Sciences (Molecular Biology)) - Universidade de Brasília. Advisor: Maria Fatima Grossi de Sa. Daniel David Noriega Vásquez. Abordagem molecular para o controle de lepidópteras praga da cana-de-açucar via transcriptômica e RNA interferente. 2018. Master’s thesis (Master degree in Biological Sciences (Molecular Biology)) - Universidade de Brasília. Advisor: Maria Fatima Grossi de Sa. Cássio Flávio Fonseca de Lima. Identificação da super família gênica AP2/EREBP em algodão (Gossypium hirsutum ) e caracterização funcional dos genes envolvidos na resposta ao bicudo-do-algodoeiro (Anthonomus grandis ). 2018. Master’s thesis (Master degree in Biological Sciences (Genetics)) - Universidade Federal do Rio de Janeiro. Advisor: Marcio Alves Ferreira. Erica Cristina Silva Rego. Caracterização da interação Musa acuminata -mycosphaerella musicolA. 2018. Master’s thesis (Master degree in Phytopathology) - Universidade de Brasília. Advisor: Robert Neil Gerard Miller. Jonathan Ferreira da Silva Santos. Caracterização funcional do gene AQUITÃ no controle do desenvolvimento radicular em Arabidopsis thaliana . 2018. Master’s thesis (Master degree in Biological Sciences (Genetics)) - Universidade Federal do Rio de Janeiro. Advisor: Marcio Alves Ferreira. Caroline de Barros Montebianco. Envolvimento da peptidogalactomanana de Cladosporium herbarum na proteção viral em plantas de tabaco. 2017. Dissertação (Mestrado em Ciências (Microbiologia) - Universidade Federal do Rio de Janeiro, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. Coorientador: Maite Vaslin de Freitas Silva. Nevilde Maria Riselo Sales. Reaproveitamento de Resíduo agroindustrial para o isolamento de Beta-Glucana e avaliação da atividade antimicrobiana. 2017. Master’s thesis (Master degree in Human Nutrition) - Universidade de Brasília. Advisor: Maria Fatima Grossi de Sa. Jacqueline Flores Schmitz. Caracterização de genes e promotores envolvidos na resposta a elevadas concentrações de CO2 atmosférico em raízes de soja (Glycine max ). 2017. Master’s thesis (Master degree in Plant Biotechnology) - Universidade Federal do Rio de Janeiro. Advisor: Marcio Alves Ferreira.

  • More efficient maize growth

    < Back More efficient maize growth Maize has a significantly higher productivity rate compared with many other crops. The particular leaf anatomy and special form of photosynthesis (referred to as 'C4') developed during its evolution allow maize to grow considerably faster than comparable plants. As a result, maize needs more efficient transport strategies to distribute the photoassimilates produced during photosynthesis throughout the plant. Researchers at HHU have now discovered a phloem loading mechanism that has not been described before -- the bundle sheath surrounding the vasculature as the place for the actual transport of compounds such as sugars or amino acids. The development of this mechanism could have been the decisive evolutionary step towards the higher transport rate that has made maize plants especially successful and useful. It is also likely linked to the more effective C4 photosynthesis used by maize compared with other plants, which only use C3 photosynthesis. The study was led by Dr. Ji Yun Kim and Prof. Dr. Wolf B. Frommer from the Institute of Molecular Physiology at HHU. Plant leaves have different structures on the upper (adaxial) and lower (abaxial) sides, and each side performs different tasks. In maize, for example, sucrose transporters (SWEET) act in the `bundle sheath cells' (which frame the vascular bundle like a wreath) on the abaxial side of the leaf. In the model plant Arabidopsis thaliana, sugars released via SWEETs from phloem parenchyma cells are transported directly into the neighbouring companion cells via active transport. In maize, sugar is released in the direction of phloem by two large bundle sheath cells. The large surface of the bundle sheath cells compared to phloem parenchyma allows much higher transport rates. Compared to Arabidopsis, maize could transport sugar more effectively. Doctoral student and first author Margaret Bezrutczyk from HHU emphasize: "The bundle sheath cells arranged in a wreath look the same at first glance. The single cell sequencing approach we used made it possible for the first time to distinguish between different types of bundle sheath cells in a maize leaf. With this technology, we expect that more cell types, especially those in the vascular bundles will be discovered in the future." Institute Head Prof. Frommer emphasizes the significance of the finding, saying: "Maize plants are extremely productive due to their C4 photosynthesis. It is conceivable that the productivity of rice or other crops can be increased by transferring the loading mechanism from maize to these crops." Source: Materials provided by Heinrich-Heine University Duesseldorf . Original written by Arne Claussen. Note: Content may be edited for style and length. Journal Reference : Margaret Bezrutczyk, Nora R. Zöllner, Colin P. S. Kruse, Thomas Hartwig, Tobias Lautwein, Karl Köhrer, Wolf B. Frommer and Ji-Yun Kim. Evidence for phloem loading via the abaxial bundle sheath cells in maize leaves . The Plant Cell , 2021 DOI: 10.1093/plcell/koaa055

  • INCT PlantStress Biotech: Disseminating Knowledge in Educational Institutions

    < Back INCT PlantStress Biotech: Disseminating Knowledge in Educational Institutions Dr. Ana Cristina Miranda Brasileiro from Embrapa – Cenargen, a member of the INCT PlantStress Biotech, has transfered and disseminated knowledge and technological innovations generated by INCT PlantStress Biotech to society through her participation in science education programs for elementary and high school students from public and private schools in the Distrito Federal (DF) and by welcoming these students for visits to Embrapa. Some of these actions include lectures on the topic “Biotechnology and Transgenics in our daily lives” in the following public schools in the DF: Centro de Ensino Médio Elefante Branco (Cemeb); Centro de Ensino Fundamental No. 01 do Cruzeiro and Centro de Ensino Fundamental 04 – Planaltina, and also Colégio Pódium, a private high school. Other actions included her participation in lectures and visits to Embrapa-Cenargen by students from Escola Polivalente, a public high school within Embrapa’s “Programa Portas Abertas”. These knowledge-transference actions to society are an important component of the INCT PlantStress Biotech and aim to bring science and biotechnology to the general public, mainly elementary and high school students and teachers. The ultimate goal is to integrate science and technology into the everyday lives of the citizens, contributing to the formation through enhanced perception, awareness, and the demystification of scientific subjects.

  • AL10 - Newton Carneiro | inctplantstress

    Learn more about AL10, its main goals within the project and meet the laboratory's work team. AL 10 - Plant Transformation - Corn Laboratory Activities - PlantStress Biotech INCT Integrate data from monocotyledon transcriptomes (rice, corn, wheat, Musa and Sorghum ) submitted to water deficit, generated by mass sequencing (Illumina - HiSeq) in previous projects. Validate promoters by transient transformation by biolistics or Agrobacterium rhyzogenes in target plants for in vivo testing of promoters (soybean, cotton and corn). Validate promoters by stable transformation in target plants for in vivo testing of promoters identified as promising in previous tests (soybean, cotton and corn). Organize, maintain and share an in vivo bank of the innovation assets obtained in the project shared by INCT members. Generate GM soybean, GM cotton and GM corn via strategies of overexpression or silencing of plant genes and evaluate the phenotype obtained regarding drought tolerance. Generate GM soybean, GM cotton and GM corn expressing sequences for silencing of insect genes and evaluate the phenotype obtained regarding the control of Helicoverpa armigera and Spodoptera frugiperda . Generate GM soybean, GM cotton and GM corn via toxin overexpression strategies and evaluate the phenotype obtained regarding the control of H. armigera and S. frugiperda . Phenotyping (greenhouse or field) corn, soybean and cotton populations, resulting from crossing with GM events to obtain proof of concept of drought tolerance and/or resistance to S. frugiperda , H. armigera or Meloidogyne spp. Newton Carneiro Team Leader Bachelor degree in Biology at Pontifícia Universidade Católica de Minas Gerais (1986), Master's in Plant breeding at Universidade Federal de Viçosa (1990) and Ph.D. in Plant Sciences at University of Arizona (1998). In 2015 participated as Visiting Scientist at University of Nebraska with RNAi. Experience in Genetics, focusing on Molecular Genetics and of Microorganisms, acting on the following subjects: biotic and abiotic stresses in maize and sorghum, genomic and transgenic. Contact Newton Portilho Carneiro EMBRAPA Milho e Sorgo E-mail: newton.carneiro@embrapa.br

  • Goals | inctplantstress

    Find out about the aims of the INCT PlantStress Biotech project. Goals In order to facilitate the implementation and monitoring of INCT activities, it was subdivided into 10 specific objectives. Each objective will be developed by a group of institutions with expertise in component activities. The innovation actives coming from each objective will be analyzed for their patent potential and applied directly to the development of biotechnological products or stored in a bank of biotechnological actives of the Institute. The transfer of technology generated and the dissemination of the results obtained will be carried out throughout the duration of the project. 01 Prospecting of new genes and molecules involved in drought tolerance and pest resistance In-plant prospection of genes/molecules for drought tolerance. Prospecting of genes/molecules for resistance to insect-pests. Prospecting of genes/molecules for resistance to phytonematode. 02 Integration of in silico data related to molecules responsive to biotic and/or abiotic stresses and interspecies Cross species. Cross stress (abiotic X abiotic). Cross stress (abiotic X biotic). Cross stress (biotic X biotic). 03 Prospecting new regulatory sequences and epigenetic regulators responsive to environmental stresses 04 Validation of innovation actives in plant-model Validation of innovation actives for drought tolerance. Validation of innovation actives for nematode resistance. 05 Analysis for intellectual property purposes and curation of innovation activess 06 Proof of concept and development of biotechnological products Validation of innovation actives for drought tolerance. Validation of innovation actives for nematode resistance. Validation of innovation actives for insect resistance. Validation of innovation actives for multiple resistance to drought and pests. Obtaining proofs of concept of innovation actives for resistance to drought and/or pests. 07 Training 08 Transfer to society 10 Management 09 Internationalization

  • AL09 - Maria Fatima Grossi-de-Sa | inctplantstress

    Learn more about AL09, its main goals within the project and meet the laboratory's work team. AL 09 - Plant Transformation - Cotton Laboratory Activities - PlantStress Biotech INCT Searching for vital insect-pest genes/molecules (Helicoverpa armigera and Spodoptera frugiperda ), using large-scale sequencing of their transcriptome and in vitro validation of gene expression. S election of new Cry molecules with high toxic activity against S. frugiperda and H. armigera . In silico identification of target molecules against insects and nematodes, through the design of specific chemical drugs for the development of new insecticides and nematicides. Analysis of the genome of Meloidogyne spp. for the selection of genes/molecules vital for gall formation. Selection of potential genes involved in the resistance of contrasting genotypes (peanuts, soybean, rice, cotton, and coffee). Integration of monocotyledonous transcriptome data (rice, corn, wheat, Musa spp., and Sorghum spp.) submitted to water deficit, generated by mass sequencing (Illumina – HiSeq) in previous projects. Integration of transcriptome data from drought-tolerant genotypes from Musa spp., Arachis spp., and cowpea submitted to water deficit combined with biotic stress (Meloidogyne spp. or Mycosphaerella ) in bioassays. Use of qRT-PCR for validation of key genes expression from metabolic pathways related to plant responses to combined stresses (biotic-biotic, biotic-biotic, abiotic-biotic). Search and validation of novel regulatory sequences (promoters) responsive to biotic and abiotic stresses, in crop plants, using transient and stable transformation (soybeans, cotton, and maize). Sequencing and selection of plant small RNAs, mRNAs, and circular RNAs (Arachis spp. , Musa spp. , soybean, pitangueira, cashew tree) submitted to biotic and/or abiotic stresses, using the Illumina platform. Validation of plant genes function, potentially involved in nematode resistance mechanisms, through molecules overexpression or gene silencing (RNAi) strategies. Validation of nematode genes function, potentially involved in the parasitism mechanisms, through RNAi strategies in model systems. Assessment and monitoring technology of biotech assets prospected for intellectual protection. Development of universal vectors containing all prospected and patented genetic elements by different institutions from the INCT Project. National and international protection of genes and regulatory sequences, via patents. Developing of GM soybean, cotton, and maize plants through overexpression of molecules and/or gene silencing strategies for drought tolerance and nematode resistance. Developing of GM soybean, cotton, and corn plants through overexpressing Bt toxin and dsRNAs sequences applied to H. armigera and S. frugiperda control. Functional validation of multiple pyramided genes involved in multiple traits, including nematodes and insect-pests (S. frugiperda or H. armigera ) resistance and drought tolerance in GM soybean and cotton plants. Phenotyping (greenhouse and/or field simulation) GM maize, soybean, and cotton plants for drought tolerance and/or resistance to S. frugiperda , H. armigera and Meloidogyne spp. Laboratory Description The Plant-Pest Molecular Interaction Laboratory (LIMPP) is coordinated by Dr. Maria Fatima Grossi-de-Sa. Research interests include both basic and applied sciences, focusing on plant-pest molecular interactions (pathogens and insect-pests) to develop novel crop protection strategies, especially for cotton and soybean. The LIMPP group’s research is known for its expertise in plant biotechnology using functional genomics, notably working on biotechnological aspects of RNA interfering (RNAi) mechanism applied to insect-pests and phytonematodes. Other current research interests include exploring new technologies for plant genetic transformation and genome editing, novel regulatory sequences for genetic engineering of crop plants for protection against insect-pests and phytonematodes, drought tolerance, and development of recombinant proteins. Research Lines Search for novel genes/molecules and peptides to be applied on the control of cotton and soybean insect-pests. Search for target genes/molecules of plant parasitic nematodes (Meloidogyne spp., Rotylenchus reniformis , Aphelenchoides spp.) to be applied in gene silencing approaches. Genetic engineering of crop plants using genome editing technologies and target genes/molecules of contrasting soybean genotypes (resistant/susceptible to Meloidogyne spp.). Search for genes/molecules and small RNAs in pest-resistance and drought-tolerant plant genotypes potentialy involved in the response to biotic and abiotic stresses (cross-stress). Validation of novel prospected biotech assets using overexpression of molecules or gene silencing approaches in plant models. Genetic engineering development of crop plants (cotton, soybean, sugarcane) using molecules/dsRNAs overexpression, gene silencing, and genome editing approaches for traits that include pest control, increase in biomass, and drought tolerance. Recent Publications ATELLA, A. L.; Grossi-de-Sa, M. F.; Alves-Ferreira, M. (2023). Cotton promoters for controlled gene expression. Electronic Journal of Biotechnology, v. 62, p. 10.1016/j.ejbt. https://doi.org/10.1016/j.ejbt.2022.12.002 BASSO, M. F.; Lourenço-Tessutti, I. T.; Moreira-Pinto, C. E.; Mendes, R. A. G.; Pereira, D. G.; Grandis, A.; Macedo, L. L. P.; Macedo, A. F.; Gomes, A. C. M. M.; Arraes, F. B. M.; Togawa, R. C.; do Carmo Costa, M. M.; Marcelino-Guimaraes, F. C.; Silva, M. C. M.; Floh, E. I. S.; Buckeridge, M. S., de Almeida Engler, J., Grossi-de-Sa, M. F. (2023) . Overexpression of the GmEXPA1 gene reduces plant susceptibility to Meloidogyne incognita . Plant Cell Report , v. 42, n. 1, p. 137-152. https://doi.org/10.1007/s00299-022-02941-3 FONSECA, F. C. A.; Antonino, J. D.; de Moura, S. M.; Rodrigues-Silva, P. L.; Macedo, L. L. P.; Gomes Júnior, J. E.; Lourenço-Tessuti, I. T.; Lucena, W. A.; Morgante, C. V.; Ribeiro, T. P.; Monnerat, R. G.; Rodrigues, M. A.; Cuccovia, I. M.; Mattar Silva, M. C.; Grossi-de-Sa, M. F. (2023) . In vivo and in silico comparison analyses of Cry toxin activities toward the sugarcane giant borer. Bulletin of Entomological Research, v. 8, p. 1-12. https://doi.org/10.1017/S000748532200061X MOREIRA, V. J. V.; Pinheiro D. H.; Lourenço-Tessuti, I. T.; Basso, M. F. ; Lisei-de-Sá, M. E.; Silva, M. C. M.; Danchin, E. G. J. ; Guimarães, P. M.; Grynberg, P.; Brasileiro, A. C. M.; Macedo, L. L. P.; Morgante, C. V.; Engler, J. A.; Grossi-de-Sá, M. F. (2023) . In planta RNAi targeting Meloidogyne incognita Minc16803 gene perturbs nematode parasitism and reduces plant susceptibility. Journal of Pest Science , v. 1, p. 1. https://doi.org/10.1007/s10340-023-01623-7 NIZOLLI, V. O.; Oliveira, V. F.; Maia, L. C.; Pegoraro, C.; Oliveira, A. C. (2023) . Genome editing in rice: New paths for an old crop. Perspectives In Agriculture, Veterinary Science, Nutrition And Natural Resources, v. 2023, p. 1-8. http://dx.doi.org/10.1079/cabireviews.2023.0008 PEREIRA, B. M.; Arraes, F.; Martins, A. C. Q.; Alves, N. S. F.; Melo, B. P.; Morgante, C. V.; Saraiva, M. A. P.; Grossi-de-Sá, M. F.; Guimarães, P. M.; Brasileiro, A. C. M. (2023). A novel soybean hairy root system for gene functional validation. PLoS One, v. 18, p. e0285504. https://doi.org/10.1371/journal.pone.0285504 TRENZ, T. S.; Turchetto-Zolet, A. C.; Margis, R.; Margis-Pinheiro, M.; Maraschin, F. S. (2023) . Functional analysis of alternative castor bean DGAT enzymes. Genetics and Molecular Biology (Online Version), v. 46, p . 1-12. https://doi.org/10.1590/1678-4685-GMB-2022-0097 VASQUEZ, D. D. N.; Pinheiro, D. H.; Teixeira, L. A.; Moreira-Pinto, C. E.; Macedo, L. L. P.; Salles-Filho, A. L. O.; Silva, M. C. M.; Lourenço-Tessutti, I. T.; Morgante, C. V.; Silva, L. P.; Grossi-de-Sa, M. F. (2023). Simultaneous silencing of juvenile hormone metabolism genes through RNAi interrupts metamorphosis in the cotton boll weebil. Frontiers in Molecular Biosciences, v. 10, p. 1073721. https://doi.org/10.3389/fmolb.2023.1073721 ARRAES, F. B. M.; Vasquez, D. D. N.; Tahir, M.; Pinheiro, D. H.; Faheem, M.; Freitas-Alves, N. S.; Moreira-Pinto, C. E.; Moreira, V. J. V.; Paes-de-Melo, B.; Lisei-de-Sá, M. E.; Morgante, C. V.; Mota, A. P. Z.; Lourenço-Tessutti, I. T.; Togawa, R. C.; Grynberg, P.; Fragoso, R. R.; de Almeida-Engler, J.; Larsen Martin, R.; Grossi-de-Sa, M. F. (2022) . Integrated Omic Approaches Reveal Molecular Mechanisms of Tolerance during Soybean and Meloidogyne incognita Interactions. Plants , v. 11, p. 2744. https://doi.org/10.3390/plants11202744 . BASSO, M. F.; Lourenço-Tessutti, I. T.; Moreira-Pinto, C. E.; Mendes, R. A. G.; Pereira, D. G.; Grandis, A.; Macedo, L. L. P.; Macedo, A. F.; Gomes, A. C. M. M.; Arraes, F. B. M.; Togawa, R. C.; do Carmo Costa, M. M.; Marcelino-Guimarães, F. C.; Silva, M. C. M.; Floh, E. I. S.; Buckeridge, M. S.; de Almeida-Engler, J.; Grossi-de-Sa, M. F. (2022) . Overexpression of the GmEXPA1 gene reduces plant susceptibility to Meloidogyne incognita . Plant Cell Reports , v. 12, p. s00299-022-0294. https://doi.org/10.1007/s00299-022-02941-3 . BASSO, M. F.; Lourenço-Tessutti, I. T.; Moreira-Pinto, C. E.; Mendes, R. A. G.; Paes-de-Melo, B.; Das Neves, M. R.; Macedo, A. F.; Figueiredo, V.; Grandis, A.; Macedo, L. L. P.; Arraes, F. B. M.; do Carmo-Costa, M. M.; Togawa, R. C.; Enrich-Prast, A.; Marcelino-Guimarães, F. C.; Gomes, A. C. M. M.; Silva, M. C. M.; Floh, E. I. S.; Buckeridge, M. S.; de Almeida-Engler, J.; Grossi-de-Sa, M. F. (2022) . Overexpression of a soybean Globin (GmGlb1-1) gene reduces plant susceptibility to Meloidogyne incognita . Planta , v. 256, p. 83. https://doi.org/10.1007/s00425-022-03992-2 . DE MOURA, S. M.; Babilonia, K.; de Macedo, L. L. P.; Grossi-de-Sa, M. F.; Shan, L.; He, P.; Alves-Ferreira, M. (2022) . The oral secretion from Cotton Boll Weevil ( Anthonomus grandis ) induces defense responses in cotton ( Gossypium spp) and Arabidopsis thaliana . Current Plant Biology , v. 31, p. 100250. https://doi.org/10.1016/j.cpb.2022.100250 . DE MOURA, S. M.; Freitas, E. O.; Ribeiro, T. P.; Paes-de-Melo, B.; Arraes, F. B. M.; Macedo, L. L. P.; Paixão, J. F. R.; Lourenço-Tessutti, I. T.; Artico, S.; da Cunha Valença, D.; Silva, M. C. M.; de Oliveira, A. C.; Alves-Ferreira, M.; Grossi-de-Sa, M. F. (2022) . Discovery and functional characterization of novel cotton promoters with potential application to pest control. Plant Cell Reports , v. 41, p. 10.1007/s00299. https://doi.org/10.1007/s00299-022-02880-z. DOS SANTOS, C.; Carmo, L. S. T.; Távora, F. T. P. K.; Lima, R. F. C.; da Nobrega Mendes, P.; Labuto, L. B. D.; de Sá M. E. L.; Grossi-de-Sa, M. F.; Mehta, A. (2022) . Overexpression of cotton genes GhDIR4 and GhPRXIIB in Arabidopsis thaliana improves plant resistance to root-knot nematode ( Meloidogyne incognita ) infection. 3 Biotech , v. 12, p. 211. https://doi.org/10.1007/s13205-022-03282-4 . FRAGOSO, R. R.; Arraes, F. B. M.; Lourenço-Tessutti, I. T.; Miranda, V. J.; Basso, M. F.; Ferreira, A. V. J.; Viana, A. A. B.; Lins, C. B. J.; Lins, P. C.; Moura, S. M.; Batista, J. A. N.; Silva, M. C. M.; Engler, G.; Morgante, C. V.; Lisei-de-Sá, M. E.; Vasques, R. M.; de Almeida-Engler, J.; Grossi-de-Sa, M. F. (2022) . Functional characterization of the pUceS8.3 promoter and its potential use for ectopic gene overexpression. Planta , v. 256, p. 69, 2022. https://doi.org/10.1007/s00425-022-03980-6 . KARALIJA, E.; Vergata, C.; Basso, M. F.; Negussu, M.; Zaccai, M.; Grossi-de-Sa, M. F.; Martinelli, F. (2022) . Chickpeas? Tolerance of Drought and Heat: Current Knowledge and Next Steps. Agronomy-Basel , v. 12, p. 2248. https://doi.org/10.3390/agronomy12102248 . MENDES, R. A. G.; Basso, M. F.; Amora, D. X.; Silva, A. P.; Paes-de-Melo, B.; Togawa, R. C.; Albuquerque, E. V. S.; Lisei-de-Sá, M. E.; Macedo, L. L. P.; Lourenço-Tessutti, I. T.; Grossi-de-Sa, M. F. (2022) . In planta RNAi approach targeting three M. incognita effector genes disturbed the process of infection and reduced plant susceptibility. Experimental Parasitology , v. 238, p. 108246. https://doi.org/10.1016/j.exppara.2022.108246 . MOREIRA, V. J. V.; Lourenço-Tessutti, I. T.; Basso, M. F.; Lisei-de-Sá, M. E.; Morgante, C. V.; Paes-de-Melo, B.; Arraes, F. B. M.; Martins-de-Sa, D.; Silva, M. C. M.; de Almeida-Engler, J.; Grossi-de-Sa, M. F. (2022) . Minc03328 effector gene downregulation severely affects Meloidogyne incognita parasitismo in transgenic Arabidopsis thaliana . Planta , v. 255, p. 44-59. https://doi.org/10.1007/s00425-022-03823-4 . REIS, M. A.; Noriega, D. D.; dos Santos Alves, G.; Coelho, R. R.; Grossi-de-Sa, M. F.; Antonino, J. D. (2022) . Why is oral-induced RNAi inefficient in Diatraea saccharalis ? A possible role for DsREase and other nucleases. Pesticide Biochemistry and Physiology , v. 186, p. 105166. https://doi.org/10.1016/j.pestbp.2022.105166 . RIBEIRO, D. G.; Mota, A. P. Z.; Santos, I. R.; Arraes, F. B. M.; Grunberg, P.; Fontes, W.; de Souza Castro, M.; de Sousa, M. V.; Lisei-de-Sá, M. E.; Grossi-de-Sa, M. F.; Franco, O. L.; Mehta, A. (2022) . NBS-LRR-WRKY genes and protease inhibitors (PIs) seem essential for cowpea resistance to root-knot nematode. Journal of Proeomics , v. 261, p. 104575. https://doi.org/10.1016/j.jprot.2022.104575 . RIBEIRO, T. P.; Vasquez, D. D. N.; Macedo, L. L. P.; Lourenço-Tessutti, I. T.; Valença, D. C.; Oliveira-Neto, O. B.; Paes-de-Melo, B.; Rodrigues-Silva, P. L.; Firmino, A. A. P.; Basso, M. F.; Lins, C. B. J.; Neves, M. R.; Moura, S. M.; Tripode, B. M. D.; Miranda, J. E.; Silva, M. C. M.; Grossi-de-Sa, M. F. (2022) . Stabilized Double-Stranded RNA Strategy Improves Cotton Resistance to CBW (Anthonomus grandis ). International Journal of Molecular Sciences , v. 23, p. 13713. https://doi.org/10.3390/ijms232213713 . TOUZDJIAN PINHEIRO KOHLRAUSCH TÁVORA, F.; de Assis dos Santos Diniz, F.; de Moraes Rêgo-Machado, C.; Chagas Freitas, N.; Barbosa Monteiro Arraes, F.; Chumbinho de Andrade, E.; Furtado, L. L.; Osiro, K. O.; Lima de Sousa, N.; Cardoso, T. B.; Márcia Mertz Henning, L.; Abrão de Oliveira Molinari, P.; Feingold, S. E.; Hunter, W. B.; Grossi-de-Sa, M. F.; Kobayashi, A. K.; Lima Nepomuceno, A.; Santiago, T. R.; Correa Molinari, H. B. (2022) . CRISPR/Cas- and Topical RNAi-Based Technologies for Crop Management and Improvement: Reviewing the Risk Assessment and Challenges Towards a More Sustainable Agriculture. Frontiers in Bioengineering and Biotechnology , v. 10, p. 10:913728. https://doi.org/10.3389/fbioe.2022.913728 . ARAUJO SOUSA, B.; Nascimento Silva, O.; Farias Porto, W.; Lima Rocha, T.; Paulino Silva, L.; Ferreira Leal, A.P.; Buccini, D.F.; Oluwagbamigbe Fajemiroye, J.; de Araujo Caldas, R.; Franco, O.L.; Grossi-De-Sá, M.F.; de La Fuente Nunez, C.; Moreno, S.E. (2021) . Identification of the active principle conferring anti inflammatory and antinociceptive properties in bamboo plant. Molecules , v. 26, p. 3054. https://doi.org/10.3390/molecules2610305 . ARRAES, F.B.M.; Martins-de-Sa, D.; Noriega Vasquez, D.D.; Melo, B.P.; Faheem, M.; de Macedo, L.L.P.; Morgante, C.V.; Barbosa, J.A.R.G.; Togawa, R.O.; Moreira, V.J.P.; Danchin, E.G.J.; Grossi-de-Sa, M.F. (2021) . Dissecting protein domain variability in the core RNA interference machinery of five insect orders. RNA Biology , v. 18, p. 1653-1681. https://doi.org/10.1080/15476286.2020.1861816 . BASSO, M.F.; Costa, J.A.; Ribeiro, T.P.; Arraes, F.B.M.; Lourenço-Tessutti, I.T.; Macedo, A.F.; Neves, M.R.; Nardeli, S.M.; Arge, L.W.; Perez, C.E.A.; Silva, P.L.R; De Macedo, L.L.P.; Lisei-de-Sa, M.E.; Amorim, R.M.A.; Pinto, E.R.C.; Silva, M.C.M.; Morgante, C.V.; Floh, E.I.S.; Alves-Ferreira, M.; Grossi-de-Sa, M.F. (2021) . Overexpression of the CaHB12 transcription factor in cotton ( Gossypium hirsutum ) improves drought tolerance. Plant Physiology and Biochemistry , v. 165, p. 80-93. https://doi.org/10.1016/j.plaphy.2021.05.009 . CABRAL, D.; Forero Ballesteros, H.; de Melo, B.P.; Lourenço-Tessutti, I.T.; Smões de Siqueira, K.M.; Obicci, L.; Grossi-de-Sa, M.F.; Hemerly, A.S.; de Almeida Engler, J. (2021) . The armadillo BTB protein ABAP1 is a crucial player in DNA replication and transcription of nematode-induced galls. Frontiers in Plant Science , v. 12, p. 636663. https://doi.org/10.3389/fpls.2021.636663. GODINHO MENDES, R.A.; Basso, M.F.; Fernandes de Araújo, J.; Paes De Melo, B.; Lima, R.N.; Ribeiro, T.P.; da Silva Mattos, V.; Saliba Albuquerque, E.V.; Grossi-De-Sa, M.; Dessaune Tameirao, S.N.; da Rocha Fragoso, R.; Mattar da Silva, M.C.; Vignols, F.; Fernandez, D.; Grossi-De-Sa, M.F. (2021) . Minc00344 and Mj-NULG1a effectors interact with GmHub10 protein to promote the soybean parasitism by Meloidogyne incognita and M. javanica . Experimental Parasitology , v. 229, p. 108153. https://doi.org/10.1016/j.exppara.2021.108153 . LISEI-DE-SÁ, M.E.; Rodrigues-Silva, P.L.; Morgante, C.V.; de Melo, B.P.; Lourenço-Tessutti, I.T.; Arraes, F.B.M.; Sousa, J.P.A.; Galbieri, R.; Amorim, R.M.S.; de Lins, C.B.J.; Macedo, L.L.P.; Moreira, V.J.; Ferreira, G.F.; Ribeiro, T.P.; Fragoso, R.R.; Silva, M.C.M.; de Almeida-Engler, J.; Grossi-de-Sa, M.F. (2021) . Pyramiding dsRNAs increases phytonematode tolerance in cotton plants. Planta , v. 254, p. 121. https://doi.org/10.1007/s00425-021-03776-0 . MENDES, R. A. G.; Basso, M. F.; Paes-de-Melo, B.; Ribeiro, T. P.; Lima, R. N.; Araujo, J. F.; Grossi-de-Sa, M. F.; Mattos, V. S.; Togawa, R. C.; Albuquerque, E. V. S.; Lisei-de-Sá, M. E.; Silva, M. C. M.; Macedo, L. L. P.; Fragoso, R. R.; Fernandez, D.; Vignols, F.; Grossi-de-Sa, M. F. (2021) . The Mi-EFF1/Minc17998 effector interacts with the soybean GmHub6 protein to promote host plant parasitism by Meloidogyne incognita . Physiological and Molecular Plant Pathology , v. 114, p. 101630. https://doi.org/10.1016/j.pmpp.2021.101630 . MENDES, R.A.G.; Basso, M.F.; Paes-de-Melo, B.; Ribeiro, T.P.; Lima, R.N.; Araujo, J.F.; Grossi-de-Sa, M.; Mattos, V.S.; Togawa, R.C.; Albuquerque, E.V.S.; Lisei-de-Sa, M.E.; Silva, M.C.M.; Macedo, L.L.P.; Fragoso, R.R.; Fernandez, D.; Vignols, F.; Grossi-de-Sa, M.F. (2021) . The Mi-EFF1/Minc17998 effector interacts with the soybean GmHub6 protein to promote host plant parasitism by Meloidogyne incognita . Physiological and Molecular Plant Pathology , v. 114, p. 101630. https://doi.org/10.1016/j.pmpp.2021.101630 . MOREIRA-PINTO, C.E.; Ramos Coelho, R.; Borges Leite, A.G.; Amaral Silveira, D.; Aguiar Souza, D.; Biaggioni Lopes, R.; Macedo, L.L.P.; Mattar Silva, M.C.; Ribeiro, T.P.; Morgante, C.V.; Antonino, J.D.; Grossi-de-Sa, M.F. (2021) . Increasing susceptibility to through-induced knockdown: a perspective to combine biocontrol and biotechnology. Pest Management Science , v. 77, p. ps.6430. https://doi.org/10.1002/ps.6430. MOREIRA-PINTO, C.E.; Coelho, R.R.; Leite, A.G.B.; Silveira, D.A.; Souza, D.A.; Lopes, R.B.; Macedo, L.L.P.; Silva, M.C.M.; Ribeiro, T.P.; Antonino, J.D.; Grossi-de-Sa, M.F. (2021) . Increasing Anthonomus grandis susceptibility to Metarhizium anisopliae through RNAi-induced AgraRelish knockdown: a perspective to combine biocontrol and biotechnology. Pest Management Science , v. 77, p. 4054-4063. https://doi.org/10.1002/ps.6430 . MOTA, A.P.Z.; Brasileiro, A.C.M.; Vidigal, B.; Oliveira, T.N.; da Cunha Quintana Martins, A.; Saraiva, M.A.P.; de Araújo, A.C.G.; Togawa, R.C.; Grossi-de-Sá, M.F.; Guimaraes, P.M. (2021) . Defining the combined stress response in wild Arachis. Scientific Reports , v. 11, p. 11097. https://doi.org/10.1038/s41598-021-90607-7 . PAES DE MELO, B.; Lourenço-Tessutti, I.T.; Fraga, O.T.; Pinheiro, L.B.; de Jesus Lins, C.B.; Morgante, C.V.; Engler, J.A.; Reis, P.A.B.; Grossi-De-Sá, M.F.; Fontes, E.P.B. (2021) . Contrasting roles of GmNAC065 and GmNAC085 in natural senescence, plant development, multiple stresses and cell death responses. Scientific Reports , v. 11, p. 11178. https://doi.org/10.1038/s41598-021-90767-6. PAES DE MELO, B.; Moura, S.M.; Morgante, C.V.; Pinheiro, D.H.; Alves, N.S.F.; Rodrigues-Silva, P.L.; Lourenço-Tessutti, I.T.; Andrade, R.V.; Fragoso, R.R.; Grossi-de-Sa, M.F. (2021) . Regulated promoters applied to plant engineering: an insight over promising soybean promoters under biotic stress and their cis-elements. Biotechnology Research and Innovation , v. 5, p. e2021005. http://dx.doi.org/10.4322/biori.202105 . RIBEIRO, T.P.; Lourenço-Tessutti, I.T.; De Melo, B.P.; Morgante, C.V.; Filho, A.S.; Lins, C.B.J.; Ferreira, G.F.; Mello, G.N.; Macedo, L.L.P.; Lucena, W.A.; Silva, M.C.M.; Oliveira-Neto, O.B.; Grossi-de-Sa, M.F. (2021) . Improved cotton transformation protocol mediated by Agrobacterium and biolistic combined-methods. Planta , v. 254, p. 20. https://doi.org/10.1007/s00425-021-03666-5 . RODRIGUES-SILVA, P. L.; Rodrigues, M. T.; Figueiredo, L. H. M.; Grossi-de-Sa, M. F. (2021) . Tendências quanto ao conhecimento e às aplicações biotecnológicas do Psidium guineense evidenciadas pelo monitoramento tecnológico. Cadernos de Ciência & Tecnologia , v. 38, p. e26704. http://dx.doi.org/10.35977/0104-1096.cct2021.v38.26704 . BASSO, M.F.; Arraes, F.B.M.; Grossi-de-Sa, M.; Vaz-Moreira, V.J.; Alves-Ferreira, M.; Grossi-de-Sa, M.F. (2020) . Insights into genetic and molecular elements for transgenic crop development. Frontiers in Plant Science , v. 11, p. 509. https://doi.org/10.3389/fpls.2020.00509 . BASSO, M.F.; Lourenço-Tessutti, I.T.; Busanello, C.; Pinto, C.E.M.; Oliveira-Freitas, E.; Ribeiro, T.P.; Almeida-Engler, J.; Oliveira, A.C.; Morgante, C.V.; Alves-Ferreira, M.; Grossi-de-Sa, M.F. (2020) . Insights obtained using different modules of the cotton uceA1.7 promoter. Planta , v. 251, p. 56. https://doi.org/10.1007/s00425-020-03348-8 . BASSO, M.F.; Lourenço-Tessutti, I.T.; Mendes, R.A.G.; Pinto, C.E.M.; Bournaud, C.; Gillet, F.X.; Togawa, R.C.; Macedo, L.L.P.; Almeida-Engler, J.; Grossi-de-Sa, M.F. (2020) . MiDaf16-like and MiSkn1-like gene families are reliable targets to develop biotechnological tools for the control and management of Meloidogyne incognita . Scientific Reports , v. 10, p. 6991. https://doi.org/10.1038/s41598-020-63968-8 . BEVITORI, R.; Sircar, S.; Mello, R.N.; Togawa, R.C.; Cortes, M.V.C.B.; Oliveira, T.S.; Grossi-de-Sa, M.F.; Parekh, N. (2020) . Identification of co-expression gene networks controlling rice blast disease during an incompatible reaction. Genetics Molecular Research , v. 19, p. gmr18579. https://doi.org/10.4238/gmr18579 . CABRAL, D.N.; Banora, M.Y.; Antonino, J.D.; Rodiuc, N.; Vieira, P.; Coelho, R.R.; Chevalier, C.; Eekhout, T.; Engler G.; De-Veylder, L.; Grossi-de-Sa, M.F.; Almeida-Engler, J. (2020) . The plant WEE1 kinase is involved in checkpoint control activation in nematode-induced galls. New Phytologist , v. 225(1), p. 430-447. https://doi.org/10.1111/nph.16185 . CAMPOS, M.L.; Prado, G.S.; Santos, V.O.; Nascimento, L.C.; Dohms, S.M.; Cunha, N.B.; Ramada, M.H.S.; Grossi-de-Sa, M.F.; Dias, S.C. (2020) . Mosses: versatile plants for biotechnological applications. Biotechnology Advances , v. 6, p. 107533. https://doi.org/10.1016/j.biotechadv.2020.107533 . FIRMINO, A.A.P.; Pinheiro, D.H.; Pinto, C.E.M.; Antonino, J.D.; Macedo, L.L.P.; Martins-de-Sa, D.; Arraes, F.B.M.; Coelho, R.R.; Fonseca, F.C.A.; Silva, M.C.M.; Almeida-Engler, J.; Silva, M.S.; Lourenço-Tessutti, I.T.; Terra, W.R.; Grossi-de-Sa, M.F. (2020) . RNAi-mediated suppression of Laccase2 impairs cuticle tanning and molting in the cotton boll weevil (Anthonomus grandis ). Frontiers in Physiology , v. 11, p. 591569. https://doi.org/10.3389/fphys.2020.591569 . GRYNBERG, P.; Togawa, R.C.; Freitas, L.D.; Antonino, J.D.; Rancurel, C.; Costa, M.M.C.; Grossi-de-Sa, M.F.; Miller, R.N.G.; Brasileiro, A.C.M.; Guimaraes, P.M.; Danchin, E.G.J. (2020) . Comparative genomics reveals novel target genes towards specific control of plant-parasitic nematodes. Genes , v. 11, p. 1347. https://doi.org/10.3390/genes11111347 . IBARRA, L.N.; Alves, A.E.O.A.; Antonino, J.D.; Prado, G.S.; Pinto, C.E.M.; Soccol, C.R.; Vasconcelos, E.A.R.; Grossi-de-Sa, M.F. (2020) . Enzymatic activity of a recombinant β-1,4-endoglucanase from the cotton boll weevil (Anthonomus grandis ) aiming second generation ethanol production. Scientific Reports , v. 10(1), p. 5367. https://doi.org/10.1038/s41598-019-56070-1 . MOTA, A.P.Z.; Fernandez, D.; Arraes, F.B.M.; Petitot, A.S.; Paes-Melo, B.; Lisei-de-Sa, M.E.; Guimaraes, P.M.; Brasileiro, A.C.M.; Albuquerque, E.V.S.; Danchin, E.G.J.; Grossi-de-Sa, M.F. (2020) . Evolutionarily conserved plant genes responsive to root-knot nematodes identified by comparative genomics. Molecular Genetics and Genomics , v. 295, p. 1063-1078. https://doi.org/10.1007/s00438-020-01677-7 . MOURA, S.M.; Rossi, M.L.; Artico, S.; Grossi-de-Sa, M.F.; Martinelli, A.P.; Alves-Ferreira, M. (2020) . Characterization of floral morphoanatomy and identification of marker genes preferentially expressed during specific stages of cotton flower development. Planta , v. 252(4), p. 71. https://doi.org/10.1007/s00425-020-03477-0 . NORIEGA-VASQUEZ, D.D.; Arraes, F.B.M.; Antonino, J.D.; Macedo, L.L.P.; Fonseca, F.C.A.; Togawa, R.C.; Grynberg, P.; Silva, M.C.M.; Negrisoli, A.S.; Grossi-de-Sa, M.F. (2020) . Transcriptome analysis and knockdown of the juvenile hormone esterase gene reveal abnormal feeding behavior in the sugarcane giant borer. Frontiers in Physiology , v. 11, p. 588450. https://doi.org/10.3389/fphys.2020.588450 . NORIEGA-VASQUEZ, D.D.; Arraes, F.B.M.; Antonino, J.D.; Macedo, L.L.P.; Fonseca, F.C.A.; Togawa, R.C.; Grynberg, P.; Silva, M.C.M.; Negrisoli, A.S.; Morgante, C.V.; Grossi-de-Sa, M.F. (2020) . Comparative gut transcriptome analysis of Diatraea saccharalis in response to the dietary source. PLoS One , v. 15(8), p. e0235575. https://doi.org/10.1371/journal.pone.0235575 . PAES-MELO, B.; Lourenço-Tessutti, I.T.; Morgante, C.V.; Santos, N.C.; Pinheiro, L.B.; Jesus-Lins, C.B.; Silva, M.C.M.; Macedo, L.L.P.; Fontes, E.P.B.; Grossi-de-Sa, M.F. (2020) . Soybean embryonic axis transformation: combining biolistic and Agrobacterium -mediated protocols to overcome typical complications of in vitro plant regeneration. Frontiers in Plant Science , v. 11, p. 1228. https://doi.org/10.3389/fpls.2020.01228 . PAES-MELO, B.; Lourenço-Tessutti, I.T.; Paixao, J.F.R.; Noriega-Vasquez, D.D.; Silva, M.C.M.; Almeida-Engler, J.; Fontes, E.P.B.; Grossi-de-Sa, M.F. (2020) . Transcriptional modulation of AREB-1 by CRISPRa improves plant physiological performance under severe water deficit. Scientific Reports , v. 10(1), p. 16231. https://doi.org/10.1038/s41598-020-72464-y . RIBEIRO, T.P.; Basso, M.F.; Carvalho, M.H.; Macedo, L.L.P.; Silva, D.M.L.S.; Lourenço-Tessutti, I.T.; Oliveira-Neto, O.B.; Romano, E.; Lucena, W.A.; Silva, M.C.M.; Tripode, B.M.D.; Abreu-Jardin, T.P.F.; Miranda, J.E.; Alves-Ferreira, M.; Morgante, C.V.; Grossi-de-Sa, M.F. (2020) . Stability and tissue-specific Cry10Aa overexpression improves cotton resistance to the cotton boll weevil. Biotechnology Research & Innovation , v. 3, p. 15. https://doi.org/10.1016/j.biori.2019.12.003 . SANTOS, C.; Nogueira, F.C.S.; Domont, G.B.; Fontes, W.; Prado, G.S.; Habibi, P.; Santos, V.O.; Oliveira-Neto, O.B.; Grossi-de-Sa, M.F.; Jorrín-Novo, J.V.; Franco, O.L.; Mehta, A. (2020) . Proteomic analysis and functional validation of a Brassica oleracea endochitinase involved in resistance to Xanthomonas campestres . Frontiers in Plant Science , v. 11, p. 201. https://doi.org/10.3389/fpls.2019.00414 . Our Team Maria Fatima Grossi-de-Sa Team Leader Maria Fatima Grossi-de-Sa holds a bachelor's degree in Biological Sciences - biomedicine modality from the University of Brasilia (1979), a master's degree in Biological Sciences (Molecular Biology) from the University of Brasilia (1982), a doctorate (Doctorat Et Sciences) in Molecular Biology from the Université Paris VII-France (1987), and was a postdoctoral fellow at the Plant Genetic System-Ghent-Belgium (1988) and at the University of California in San Diego (1995-1996). She is the Lead Researcher at EMBRAPA Genetic Resources and Biotechnology (since 1989) and professor at the Catholic University of Brasília (since 2004). She is a CNPq productivity fellow (level 1A), member of CAPES International Advisory Committee (since 2007), full member (Agrarian Sciences) of the Brazilian Academy of Sciences (elected in 2011) and a member of the World Academy of Science -TWAS (elected in 2014). Among other awards and honors, she notably received the Scopus Award 2010 (Elsevier / CAPES) and the medal of the National Order of Scientific Merit (2018). She held the position of coordinator at the Biotechnology area and alternate member of CTC-ES at CAPES (2007-2014), and the presidency of the Brazilian Society of Biotechnology - SBBiotec (2008-2013 and 2016-current). She has experience in the field of Plant Genetics and Biotechnology, with an emphasis on Genetic Engineering and Plant Molecular Biology. The primary focus of her research is on the development of biotechnological products, using different strategies, including genome editing, aiming to increase tolerance and resistance to biotic and abiotic stress in plants. Morevoer, biotechnological tools are applied for the development of biopharmaceuticals. Her main research fields include: plant defense proteins, insecticidal proteins, plant-pest molecular interaction, and biotechnological assets applied to agribusiness. Carolina Vianna Morgante She is undergraduated in Biological Sciences at University of Sao Paulo - Biosciences Institute (1999). Carolina Morgante holds a master's and doctorate's degrees in Agronomy (Genetics and Plant Breeding) from the University of São Paulo (2003 and 2008, respectively). She is currently a researcher at Embrapa Semiárido and has experience in Genetics, focusing on Plant Genetics and Molecular. Diana Isolda Clotilde Fernandez She is currently a permanent Senior researcher at the French Research Institute for Development - Institut de Recherche pour le Développement (IRD, France) and remained until November 2020 at Embrapa-Cenargen. She has experience in Biochemistry, with emphasis on Molecular Biology, working on the following subjects: phytopathology, plant-pathogen interactions, plant immunity, nematodes, rust, rice, Coffea arabica , Hemileia vastatrix , Meloidogyne spp. Isabela Tristan Lourenço Tessutti Isabela is undergraduated in Biological Sciences from the University of Brasilia (2006), and holds a master's and a doctorate's degree in Molecular Biology from the same University (2008 and 2014, respectively). She was a post-doctoral fellow (2020) at the Institut National de Recherche pour l'Agriculture , l'Alimentation et l'Envrionment (INRA - Sophia Antipolis/France). Recently, she works at the Plant-Pest Interaction Laboratory at Embrapa Genetic Resources and Biotechnology, coordinated by Dr. Maria Fatima Gross-de-Sa. Her main research fields are: plant-pest interaction, plant resistance to biotic stress (nematodes and insects), and tolerance to abiotic stress (drought). She has expertise in: functional genomics for phytonematodes, insects, plants and bacteria; plant genetic transformation; gene (RNAi) silencing; heterologus expression of proteins using bacterial cells; functional characterization of plant promoters; spacial and temporal determinarion of gene expression using real-time PCR; genome editing using CRISPR methodology for biomass increase, drought tolerance and pest resistance. Leonardo Lima Pepino de Macedo Leonardo is undergraduated in Biological Sciences from the Federal University of Rio Grande do Norte (2005). He holds a master degree in Biochemistry from the same University (2007) and a doctorate's degree in Genomic Sciences and Biotechnology from the Catholic University of Brasília (2012). He has experience in Biochemistry and Molecular Biology, with expertise in the following areas: cloning and expression of proteins in heterologous systems; bioprospecting proteins with entomotoxic activity (vicillins, lectins, proteinase inhibitors and Cry toxins) aiming at the control of dipterous, lepidopteran and coleopteran insects; development of gene silencing strategies via RNAi for the control of insect pests. Maria Eugenia Lisei de Sa Maria Eugenia is undergraduated in Biological Sciences from Faculdades Metodistas Integradas Isabela Hendrix (1981), Master in Agronomy (Phytotechnics) from the Universidade Federal do Ceará (1984), PhD in Genetics and Biochemistry from the Universidade Federal de Uberlândia (2004) and post-doctorate fellow in Biotechnology at the Institute de Recherche pour le Développement-França (2013). She is Researcher (II) at the Minas Gerais Agricultural Research Corporation (EPAMIG) and currently works as a collaborative researcher at Embrapa Genetic Resources and Biotechnology -Cenargen. He has experience in the field of soybean breeding, with an emphasis on the development of soybean cultivars with characteristics suitable for human consumption. Her expertise lies on plant defense proteins (proteinase inhibitors, alpha-amylase inhibitors, lectins, defensins, osmotins); plant-pest molecular interaction; development of genetically modified plants for resistance to biotic stress (insects and nematodes) and tolerance to abiotic stress. Maria Cristina Mattar da Silva Maria Cristina is undergraduated in Biological Sciences from the Universidade Estadual Paulista Júlio de Mesquita Filho (1984) and from Universidade de Brasília (1987). She holds a master's degree in Biological Sciences (Molecular Biology) from the Universidade de Brasília (1992) and a doctorate's degree in Biological Sciences (Molecular Biology) from University of Brasília (2002). She is a Researcher at Embrapa Genetic Resources and Biotechnology since 1989. She is expert in plant molecular biology, working in the field of plant biotechnology for biotic and abiotic stress. The main focus of her researches are: evolution of molecules in vitro for selection of variants with improved activity; molecular studies of plant-pest interaction for insect resistance. Currently, she is a Member of the Brazilian Society of Biotechnology. FIND OUT MORE ABOUT OUR TEAM Contact Maria Fatima Grossi de Sá EMBRAPA Genetic Resources and Biotechnology W5 Norte Avenue (end) - P.O. Box 02372 - Postal Code 70770-917 - Brasília, DF - Brazil E-mail: fatima.grossi@embrapa.br Phone number: +55 61 3448-4705

  • Coordinator | inctplantstress

    Learn more about the project coordinator, her resume and recent publications. Maria Fatima Grossi-de-Sa Coordinator PlantStress Biotech INCT Researcher Group Leader at Embrapa Genetic Resources and Biotechnology Lattes: http://lattes.cnpq.br/3058512809761818 E-mail: fatima.grossi@embrapa.br Phone number: +55 (61) 3448-4902 PROFILE Maria Fatima Grossi-de-Sa is a Researcher Group Leader at EMBRAPA Genetic Resources and Biotechnology and Professor at the Catholic University of Brasília, Brasília-DF, Brazil. She is also the Coordinator of the National Institute of Science and Technology – PlantStress Biotech INCT at EMBRAPA and Director President of the Brazilian Society of Biotechnology. She is a full member of the Brazilian Academy of Sciences and the World Academy of Science (TWAS). In 2018, she received the Commander medal of the National Order of Scientific Merit. She works in a wide range of research interests with an emphasis on plant biotechnology. Her main research interests are: plant-pest molecular interactions, focused on phytonematodes and insect-pests; development of GM crop plants for tolerance/resistance to abiotic and biotic stresses; understanding the molecular RNAi mechanism on insect pests, and; development of biopharmaceuticals. She is classified as scientific researcher 1A at the Brazilian National Research Council (CNPq), and has coordinated several research projects finnaced by EMBRAPA, FAP-DF, CAPES, and CNPq. Currently, her research group is funded by industries and the productive sector of agribusiness. EDUCATION B.Sc. In Biological Sciences, University of Brasilia, Brazil, 1979. M.Sc. In Molecular Biology, University of Brasilia, Brazil, 1982. Ph.D. University PARIS VII, Paris, France, 1987. CURRENT POSITION Researcher Leader on Plant Biotechnology at EMBRAPA Genetic Resources and Biotechnology - Brasilia- DF, Brazil (since 1989). Senior Associate Professor at Catholic University of Brasilia (UCB), Brasilia-DF, Brazil (since 2004). President of Brazilian Society of Biotechnology (since 2016). Director of the National Institute Science & Technology on Plant Stress Biotechnology (INCT PlantStress Biotech; since 2016). HONOURS/AWARDS Award of Excellence in recognition of Outstanding Research Performance by Embrapa (2009). Award Brazil SCOPUS Awards 2010 - Elsevier/CAPES (2010). Full elected member of Brazilian Academy of Sciences (Elected May 2011). Full elected member of the World Academy of Sciences (Elected Nov 2014). National Order of Scientific Merit - Commander Class, Ministry of Science and Technology - Presidency of the Republic (2018). RESEARCH INTERESTS The main research interest focuses on novel and innovative approaches to crop protection, plant-nematode and insect interactions, transgenic crops, biotic and abiotic stresses, plant genome editing, gene silencing, insect nanobiotechnology, biopesticides based on RNA interference approaches, and recombinant proteins. RELEVANT PAPERS (LAST 7 YEARS) 2023 ATELLA, A. L.; Grossi-de-Sa, M. F.; Alves-Ferreira, M. (2023). Cotton promoters for controlled gene expression. Electronic Journal of Biotechnology, v. 62, p. 10.1016/j.ejbt. https://doi.org/10.1016/j.ejbt.2022.12.002 BASSO, M. F.; Lourenço-Tessutti, I. T.; Moreira-Pinto, C. E.; Mendes, R. A. G.; Pereira, D. G.; Grandis, A.; Macedo, L. L. P.; Macedo, A. F.; Gomes, A. C. M. M.; Arraes, F. B. M.; Togawa, R. C.; do Carmo Costa, M. M.; Marcelino-Guimaraes, F. C.; Silva, M. C. M.; Floh, E. I. S.; Buckeridge, M. S., de Almeida Engler, J., Grossi-de-Sa, M. F. (2023). Overexpression of the GmEXPA1 gene reduces plant susceptibility to Meloidogyne incognita . Plant Cell Report , v. 42, n. 1, p. 137-152. https://doi.org/10.1007/s00299-022-02941-3 TRENZ, T. S.; Turchetto-Zolet, A. C.; Margis, R.; Margis-Pinheiro, M.; Maraschin, F. S. (2023) . Functional analysis of alternative castor bean DGAT enzymes. Genetics and Molecular Biology (Online Version), v. 46, p. 1-12. https://doi.org/10.1590/1678-4685-GMB-2022-0097 2022 ARRAES, F.B.M.; Vasquez, D.D.N.; Tahir, M.; Pinheiro, D.H.; Faheem, M.; Freitas-Alves, N.S.; Moreira-Pinto, C.E.; Moreira, V.J.V.; Paes-de-Melo, B.; Lisei-de-Sa, M.E.; Morgante, C.V.; Mota, A.P.Z.; Lourenço-Tessutti, I.T.; Togawa, R.C.; Grynberg, P.; Fragoso, R.R.; de Almeida-Engler, J.; Larsen, M.R.; Grossi-de-Sa, M.F. (2022). Integrated omic approaches reveal molecular mechanisms of tolerance during soybean and Meloidogyne incognita interactions. Plants , v. 11, n. 2744. https://doi.org/10.3390/plants11202744 BASSO, M.F.; Lourenço-Tessutti, I.T.; Moreira-Pinto, C.E.; Mendes, R.A.G.; Pereira, D.G.; Grandis, A. Macedo, L.L.P.; Macedo, A.F.; Gomes, A.C.M.M.; Arraes, F.B.M.; Togawa, R.C.; Costa, M.M.C.C.; Marcelino-Guimaraes, F.C.; Silva, M.C.M.; Floh, E.I.S.; Buckeridge, M.S.; de Almeida Engler, J.; Grossi-de-Sa, M.F. (2022). Overexpression of the GmEXPA1 gene reduces plant susceptibility to Meloidogyne incognita . Plant Cell Reports . https://doi.org/10.1007/s00299-022-02941-3 FRAGOSO, R.R.; Arraes, F.B.M.; Lourenço-Tessutti, I.T.; Miranda, V.J.; Basso, M.F.; Ferreira, A.V.J.; Viana, A.A.B.; Lins, C.B.J.; Lins, P.C.; Moura, S.M.; Batista, J.A.N.; Silva, M.C.M.; Engler, G.; Morgante, C.V.; Lisei-de-Sa, M.E.; Vasques, R.M.; de Almeida-Engler J.; Grossi-de-Sa, M.F. (2022). Functional characterization of the pUceS8.3 promoter and its potential use for ectopic gene overexpression. Planta , v. 256, n. 4, p. 1-18. https://doi.org/10.1007/s00425-022-03980-6 HABIBI, P.; Shi, Y.; Fatima Grossi-de-Sa, M. ; Khan I. (2022). Plants as sources of natural and recombinant antimalaria agents. Molecular Biotechnology . https://doi.org/10.1007/s12033-022-00499-9 KARALIJA, E.; Vergata, C.; Basso, M.F.; Negussu, M.; Zaccai, M.; Grossi-de-Sa, M.F. ; Martinelli, F. Chickpeas’. (2022). Tolerance of Drought and Heat: Current Knowledge and Next Steps. Agronomy , v. 12, n. 2248. https://doi.org/10.3390/agronomy12102248 MENDES, R.A.G.; Basso, M.F.; Amora, D.X.; Silva, A.P.; Paes-de-Melo, B.; Togawa, R.C.; Albuquerque, E.V.S.; Lisei-de-Sa, M.E.; Macedo, L.L.P.; Lourenço-Tessutti, I.T.; Grossi-de-Sa, M.F. (2022). In planta RNAi approach targeting three M. incognita effector genes disturbed the process of infection and reduced plant susceptibility. Experimental Parasitolog y, v. 238, p. 108246, https://doi.org/10.1016/j.exppara.2022.108246 MOREIRA, V.J.V.; Lourenço-Tessutti, I.T.; Basso, M.F.; Lisei-de-Sa, M.E.; Morgante, C.V.; Paes-de-Melo, B.; Arraes, F.B.M.; Martins-de-Sa, D.; Silva, M.C.M.; de Almeida Engler, J.; Grossi-de-Sa, M.F. (2022). Minc03328 effector gene downregulation severely affects Meloidogyne incognita parasitism in transgenic Arabidopsis thaliana . Planta , v. 255, p. 44-59. https://doi.org/10.1007/s00425-022-03823-4 MOURA, S.M.; Babilonia, K.; de Macedo, L.L.P.; Grossi-de-Sá, M.F. ; Shan, L.; He, P.; Alves-Ferreira, M. (2022). The oral secretion from Cotton Boll Weevil (Anthonomus grandis) induces defense responses in cotton (Gossypium spp) and Arabidopsis thaliana . Current Plant Biology , p. 100250. https://doi.org/10.1016/j.cpb.2022.100250 MOURA, S.M.; Freitas, E.O.; Ribeiro, T.P.; Paes-de-Melo, B.; Arraes, B.M.F.; Macedo, L.L.P.; Paixão, J.F.R.; Lourenço-Tessutti, I.T.; Artico, S.; Valença, D.C.; Silva, M.C.M.; Oliveira, A.C.; Alves-Ferreira, M.; Grossi-de-Sa, M.F. (2022). Discovery and functional characterization of novel cotton promoters with potential application to pest control. Plant Cell Reports , v. 41, p. 1589–1601. https://doi.org/10.1007/s00299-022-02880-z REIS, M.A.; Noriega, D.D.; dos Santos Alves, G.; Coelho, R.R.; Grossi-de-Sa, M.F. ; Antonino, J.D. (2022). Why is oral-induced RNAi inefficient in Diatraea saccharalis ? A possible role for DsREase and other nucleases. Pesticide Biochemistry and Physiology, v. 186, p. 105166. https://doi.org/10.1016/j.pestbp.2022.105166 RIBEIRO, T.P.; Vasquez, D.D.N.; Macedo, L.L.P.; Lourenço-Tessutti, I.T.; Valença, D.C.; Oliveira-Neto, O.B.; Paes-de-Melo, B.; Rodrigues-Silva, P.L.; Firmino, A.A.P.; Basso, M.F.; Lins, C.B.J.; Neves, M.R.; Moura, S.M.; Tripode, B.M.D.; Miranda, J.E.; Silva, M.C.M.; Grossi-de-Sa, M.F. (2022). Stabilized Double-Stranded RNA Strategy Improves Cotton Resistance to CBW (Anthonomus grandis ). International Journal of Molecular Sciences , v. 23, n. 13713. https://doi.org/10.3390/ijms232213713 RIBEIRO, D.G.; Mota, A.P.Z.; Santos, I.R.; Arraes, F.B.M.; Grynberg, P.; Fontes, W.; Castro, M.S.; Sousa, M.V.; Lisei-de-Sá, M.E.; Grossi-de-Sa, M.F. ; Franco, O.L.; Mehta, A. (2022). NBS-LRR-WRKY genes and protease inhibitors (PIs) seem essential for cowpea resistance to root-knot nematode. Journal of Proteomics , p. 104575. https://doi.org/10.1016/j.jprot.2022.104575 dos SANTOS, C., Carmo, L.S.T., Távora, F.T.P.K.; Lima, R.F.C.; Mendes, P.N.; Labuto, L.B.D.; de Sá, M.E.L.; Grossi-de-Sa, M.F.; Mehta, A. (2022). Overexpression of cotton genes GhDIR4 and GhPRXIIB in Arabidopsis thaliana improves plant resistance to root-knot nematode (Meloidogyne incognita ) infection. 3 Biotech , v. 12, p. 211. https://doi.org/10.1007/s13205-022-03282-4 TÁVORA, F.T.P.K.; Diniz, F.A.S.; Rêgo-Machado M.C.; Freitas, N.C.; Arraes, F.B.M.; Andrade, C.E.; Furtado, L.L.; Osiro, K.O.; Lima de Sousa, N.; Cardoso, T.B.; Henning, L.M.M.; Molinari, P.A.O.; Feingold, S.E.; Hunter, W.B.; Grossi de Sá, M.F. ; Kobayashi, A.K.; Nepomuceno, A.L.; Santiago, T.R.; Molinari, H.B.C. (2022). CRISPR/Cas- and topical RNAi-based technologies for crop management and improvement: reviewing the risk assessment and challenges towards a more sustainable agriculture. Frontiers in Bioengineering and Biotechnology , v. 10, p. 913728. https://doi.org/10.3389/fbioe.2022.913728 2021 ARAUJO SOUSA, B.; Nascimento Silva, O.; Farias Porto, W.; Lima Rocha, T.; Paulino Silva, L.; Ferreira Leal, A.P.; Buccini, D.F.; Oluwagbamigbe Fajemiroye, J.; de Araujo Caldas, R.; Franco, O.L.; Grossi-De-Sá, M.F. ; de La Fuente Nunez, C.; Moreno, S.E. (2021). Identification of the active principle conferring anti inflammatory and antinociceptive properties in bamboo plant. Molecules , v. 26, p. 3054. https://doi.org/10.3390/molecules26103054 ARRAES, F.B.M.; Martins-de-Sa, D.; Noriega Vasquez, D.D.; Melo, B.P.; Faheem, M.; de Macedo, L.L.P.; Morgante, C.V.; Barbosa, J.A.R.G.; Togawa, R.O.; Moreira, V.J.P.; Danchin, E.G.J.; Grossi-de-Sa, M.F. (2021). Dissecting protein domain variability in the core RNA interference machinery of five insect orders. RNA Biology , v. 18, p. 1653-1681. https://doi.org/10.1080/15476286.2020.1861816 BASSO, M.F.; Costa, J.A.; Ribeiro, T.P.; Arraes, F.B.M.; Lourenço-Tessutti, I.T.; Macedo, A.F.; Neves, M.R.; Nardeli, S.M.; Arge, L.W.; Perez, C.E.A.; Silva, P.L.R; De Macedo, L.L.P.; Lisei-de-Sa, M.E.; Amorim, R.M.A.; Pinto, E.R.C.; Silva, M.C.M.; Morgante, C.V.; Floh, E.I.S.; Alves-Ferreira, M.; Grossi-de-Sa, M.F. (2021). Overexpression of the CaHB12 transcription factor in cotton ( Gossypium hirsutum ) improves drought tolerance. Plant Physiology and Biochemistry , v. 165, p. 80-93. https://doi.org/10.1016/j.plaphy.2021.05.009 CABRAL, D.; Forero Ballesteros, H.; de Melo, B.P.; Lourenço-Tessutti, I.T.; Smões de Siqueira, K.M.; Obicci, L.; Grossi-de-Sa, M.F. ; Hemerly, A.S.; de Almeida Engler, J. (2021). The armadillo BTB protein ABAP1 is a crucial player in DNA replication and transcription of nematode-induced galls. Frontiers in Plant Science , v. 12, p. 636663. https://doi.org/10.3389/fpls.2021.636663 LISEI-DE-SÁ, M.E.; Rodrigues-Silva, P.L.; Morgante, C.V.; de Melo, B.P.; Lourenço-Tessutti, I.T.; Arraes, F.B.M.; Sousa, J.P.A.; Galbieri, R.; Amorim, R.M.S.; de Lins, C.B.J.; Macedo, L.L.P.; Moreira, V.J.; Ferreira, G.F.; Ribeiro, T.P.; Fragoso, R.R.; Silva, M.C.M.; de Almeida-Engler, J.; Grossi-de-Sa, M.F. (2021). Pyramiding dsRNAs increases phytonematode tolerance in cotton plants. Planta , v. 254, p. 121. https://doi.org/10.1007/s00425-021-03776-0 MENDES, R.A.G.; Basso, M.F.; Paes-de-Melo, B.; Ribeiro, T.P.; Lima, R.N.; Araujo, J.F.; Grossi-de-Sa, M.; Mattos, V.S.; Togawa, R.C.; Albuquerque, E.V.S.; Lisei-de-Sa, M.E.; Silva, M.C.M.; Macedo, L.L.P.; Fragoso, R.R.; Fernandez, D.; Vignols, F.; Grossi-de-Sa, M.F. (2021). The Mi-EFF1/Minc17998 effector interacts with the soybean GmHub6 protein to promote host plant parasitism by Meloidogyne incognita . Physiological and Molecular Plant Pathology , v. 114, p. 101630. https://doi.org/10.1016/j.pmpp.2021.101630 MENDES, R.A.G.; Basso, M.F.; Fernandes de Araújo, J.; Paes De Melo, B.; Lima, R.N.; Ribeiro, T.P.; da Silva Mattos, V.; Saliba Albuquerque, E.V.; Grossi-De-Sa, M.; Dessaune Tameirao, S.N.; da Rocha Fragoso, R.; Mattar da Silva, M.C.; Vignols, F.; Fernandez, D.; Grossi-De-Sa, M.F. (2021). Minc00344 and Mj-NULG1a effectors interact with GmHub10 protein to promote the soybean parasitism by Meloidogyne incognita and M. javanica. Experimental Parasitology , v. 229, p. 108153. https://doi.org/10.1016/j.exppara.2021.108153 MOREIRA-PINTO, C.E.; Ramos Coelho, R.; Borges Leite, A.G.; Amaral Silveira, D.; Aguiar Souza, D.; Biaggioni Lopes, R.; Macedo, L.L.P.; Mattar Silva, M.C.; Ribeiro, T.P.; Morgante, C.V.; Antonino, J.D.; Grossi-de-Sa, M.F. (2021). Increasing susceptibility to through-induced knockdown: a perspective to combine biocontrol and biotechnology. Pest Management Science , v. 77, p. ps.6430. https://doi.org/10.1002/ps.6430 MOREIRA-PINTO, C.E.; Coelho, R.R.; Leite, A.G.B.; Silveira, D.A.; Souza, D.A.; Lopes, R.B.; Macedo, L.L.P.; Silva, M.C.M.; Ribeiro, T.P.; Antonino, J.D.; Grossi-de-Sa, M.F. (2021). Increasing Anthonomus grandis susceptibility to Metarhizium anisopliae through RNAi-induced AgraRelish knockdown: a perspective to combine biocontrol and biotechnology. Pest Management Science , v. 77, p. 4054-4063. https://doi.org/10.1002/ps.6430 MOTA, A.P.Z.; Brasileiro, A.C.M.; Vidigal, B.; Oliveira, T.N.; da Cunha Quintana Martins, A.; Saraiva, M.A.P.; de Araújo, A.C.G.; Togawa, R.C.; Grossi-de-Sá, M.F. ; Guimaraes, P.M. (2021). Defining the combined stress response in wild Arachis . Scientific Reports , v. 11, p. 11097. https://doi.org/10.1038/s41598-021-90607-7 PAES DE MELO, B.; Lourenço-Tessutti, I.T.; Fraga, O.T.; Pinheiro, L.B.; de Jesus Lins, C.B.; Morgante, C.V.; Engler, J.A.; Reis, P.A.B.; Grossi-De-Sá, M.F. ; Fontes, E.P.B. (2021). Contrasting roles of GmNAC065 and GmNAC085 in natural senescence, plant development, multiple stresses and cell death responses. Scientific Reports , v. 11, p. 11178. https://doi.org/10.1038/s41598-021-90767-6 PAES DE MELO, B.; Moura, S.M.; Morgante, C.V.; Pinheiro, D.H.; Alves, N.S.F.; Rodrigues-Silva, P.L.; Lourenço-Tessutti, I.T.; Andrade, R.V.; Fragoso, R.R.; Grossi-de-Sa, M.F. (2021). Regulated promoters applied to plant engineering: an insight over promising soybean promoters under biotic stress and their cis-elements. Biotechnology Research and Innovation , v. 5, p. e2021005. http://dx.doi.org/10.4322/biori.202105 RIBEIRO, T.P.; Lourenço-Tessutti, I.T.; De Melo, B.P.; Morgante, C.V.; Filho, A.S.; Lins, C.B.J.; Ferreira, G.F.; Mello, G.N.; Macedo, L.L.P.; Lucena, W.A.; Silva, M.C.M.; Oliveira-Neto, O.B.; Grossi-de-Sa, M.F. (2021). Improved cotton transformation protocol mediated by Agrobacterium and biolistic combined-methods. Planta , v. 254, p. 20. https://doi.org/10.1007/s00425-021-03666-5 RODRIGUES-SILVA, P.L.; Amorim, G.C.; Andrade, I.E.P.C.; Cunha, V.A.; Figueiredo, L.H.M.; Grossi-de-Sa, M.F. (2021). Monitoramento tecnológico da planta cagaita (Eugenia dysenterica ) e aplicações biotecnológicas potenciais. Cadernos de Prospecção , v. 14, p. 1248-1264. https://doi.org/10.9771/cp.v14i4.38459 RODRIGUES-SILVA, P.L.; Fernandes, P.B.B.; Rodrigues, M.T.; Figueiredo, L. H. M.; Grossi-de-Sa, M.F. (2021). Tendências quanto ao conhecimento e às aplicações biotecnológicas do Psidium guineense evidenciadas pelo monitoramento tecnológico. Cadernos de Ciência & Tecnologia , v. 38, p. e26704. https://doi.org/10.35977/0104-1096.cct2021.v38.26704 2020 BASSO, M.F.; Arraes, F.B.M.; Grossi-de-Sa, M.; Vaz-Moreira, V.J.; Alves-Ferreira, M.; Grossi-de-Sa, M.F. (2020). Insights into genetic and molecular elements for transgenic crop development. Frontiers in Plant Science , v. 11, p. 509. https://doi.org/10.3389/fpls.2020.00509 BASSO, M.F.; Lourenço-Tessutti, I.T.; Busanello, C.; Pinto, C.E.M.; Oliveira-Freitas, E.; Ribeiro, T.P.; Almeida-Engler, J.; Oliveira, A.C.; Morgante, C.V.; Alves-Ferreira, M.; Grossi-de-Sa, M.F. (2020). Insights obtained using different modules of the cotton uceA1.7 promoter. Planta , v. 251, p. 56. https://doi.org/10.1007/s00425-020-03348-8 BASSO, M.F.; Lourenço-Tessutti, I.T.; Mendes, R.A.G.; Pinto, C.E.M.; Bournaud, C.; Gillet, F.X.; Togawa, R.C.; Macedo, L.L.P.; Almeida-Engler, J.; Grossi-de-Sa, M.F. (2020). MiDaf16-like and MiSkn1-like gene families are reliable targets to develop biotechnological tools for the control and management of Meloidogyne incognita. Scientific Reports , v. 10, p. 6991. https://doi.org/10.1038/s41598-020-63968-8 BEVITORI, R.; Sircar, S.; Mello, R.N.; Togawa, R.C.; Cortes, M.V.C.B.; Oliveira, T.S.; Grossi-de-Sa, M.F. ; Parekh, N. (2020). Identification of co-expression gene networks controlling rice blast disease during an incompatible reaction. Genetics Molecular Research , v. 19, p. gmr18579. https://doi.org/10.4238/gmr18579 CABRAL, D.N.; Banora, M.Y.; Antonino, J.D.; Rodiuc, N.; Vieira, P.; Coelho, R.R.; Chevalier, C.; Eekhout, T.; Engler G.; De-Veylder, L.; Grossi-de-Sa, M.F. ; Almeida-Engler, J. (2020). The plant WEE1 kinase is involved in checkpoint control activation in nematode-induced galls. New Phytologist , v. 225(1), p. 430-447. https://doi.org/10.1111/nph.16185 CAMPOS, M.L.; Prado, G.S.; Santos, V.O.; Nascimento, L.C.; Dohms, S.M.; Cunha, N.B.; Ramada, M.H.S.; Grossi-de-Sa, M.F. ; Dias, S.C. (2020). Mosses: versatile plants for biotechnological applications. Biotechnology Advances , v. 6, p. 107533. https://doi.org/10.1016/j.biotechadv.2020.107533 FIRMINO, A.A.P.; Pinheiro, D.H.; Pinto, C.E.M.; Antonino, J.D.; Macedo, L.L.P.; Martins-de-Sa, D.; Arraes, F.B.M.; Coelho, R.R.; Fonseca, F.C.A.; Silva, M.C.M.; Almeida-Engler, J.; Silva, M.S.; Lourenço-Tessutti, I.T.; Terra, W.R.; Grossi-de-Sa, M.F. (2020). RNAi-mediated suppression of Laccase2 impairs cuticle tanning and molting in the cotton boll weevil (Anthonomus grandis ). Frontiers in Physiology , v. 11, p. 591569. https://doi.org/10.3389/fphys.2020.591569 GRYNBERG, P.; Togawa, R.C.; Freitas, L.D.; Antonino, J.D.; Rancurel, C.; Costa, M.M.C.; Grossi-de-Sa, M.F. ; Miller, R.N.G.; Brasileiro, A.C.M.; Guimaraes, P.M.; Danchin, E.G.J. (2020). Comparative genomics reveals novel target genes towards specific control of plant-parasitic nematodes. Genes , v. 11, p. 1347. https://doi.org/10.3390/genes11111347 IBARRA, L.N.; Alves, A.E.O.A.; Antonino, J.D.; Prado, G.S.; Pinto, C.E.M.; Soccol, C.R.; Vasconcelos, E.A.R.; Grossi-de-Sa, M.F. (2020). Enzymatic activity of a recombinant β-1,4-endoglucanase from the cotton boll weevil (Anthonomus grandis ) aiming second generation ethanol production. Scientific Reports , v. 10(1), p. 5367. https://doi.org/10.1038/s41598-019-56070-1 MOTA, A.P.Z.; Fernandez, D.; Arraes, F.B.M.; Petitot, A.S.; Paes-Melo, B.; Lisei-de-Sa, M.E.; Guimaraes, P.M.; Brasileiro, A.C.M.; Albuquerque, E.V.S.; Danchin, E.G.J.; Grossi-de-Sa, M.F. (2020). Evolutionarily conserved plant genes responsive to root-knot nematodes identified by comparative genomics. Molecular Genetics and Genomics , v. 295, p. 1063-1078. https://doi.org/10.1007/s00438-020-01677-7 MOURA, S.M.; Rossi, M.L.; Artico, S.; Grossi-de-Sa, M.F. ; Martinelli, A.P.; Alves-Ferreira, M. (2020). Characterization of floral morphoanatomy and identification of marker genes preferentially expressed during specific stages of cotton flower development. Planta , v. 252(4), p. 71. https://doi.org/10.1007/s00425-020-03477-0 NORIEGA-VASQUEZ, D.D.; Arraes, F.B.M.; Antonino, J.D.; Macedo, L.L.P.; Fonseca, F.C.A.; Togawa, R.C.; Grynberg, P.; Silva, M.C.M.; Negrisoli, A.S.; Grossi-de-Sa, M.F. (2020). Transcriptome analysis and knockdown of the juvenile hormone esterase gene reveal abnormal feeding behavior in the sugarcane giant borer. Frontiers in Physiology , v. 11, p. 588450. https://doi.org/10.3389/fphys.2020.588450 NORIEGA-VASQUEZ, D.D.; Arraes, F.B.M.; Antonino, J.D.; Macedo, L.L.P.; Fonseca, F.C.A.; Togawa, R.C.; Grynberg, P.; Silva, M.C.M.; Negrisoli, A.S.; Morgante, C.V.; Grossi-de-Sa, M.F. (2020). Comparative gut transcriptome analysis of Diatraea saccharalis in response to the dietary source. PLoS One , v. 15(8), p. e0235575. https://doi.org/10.1371/journal.pone.0235575 PAES-MELO, B.; Lourenço-Tessutti, I.T.; Morgante, C.V.; Santos, N.C.; Pinheiro, L.B.; Jesus-Lins, C.B.; Silva, M.C.M.; Macedo, L.L.P.; Fontes, E.P.B.; Grossi-de-Sa, M.F. (2020). Soybean embryonic axis transformation: combining biolistic and Agrobacterium -mediated protocols to overcome typical complications of in vitro plant regeneration. Frontiers in Plant Science , v. 11, p. 1228. https://doi.org/10.3389/fpls.2020.01228 PAES-MELO, B.; Lourenço-Tessutti, I.T.; Paixao, J.F.R.; Noriega-Vasquez, D.D.; Silva, M.C.M.; Almeida-Engler, J.; Fontes, E.P.B.; Grossi-de-Sa, M.F. (2020). Transcriptional modulation of AREB-1 by CRISPRa improves plant physiological performance under severe water deficit. Scientific Reports , v. 10(1), p. 16231. https://doi.org/10.1038/s41598-020-72464-y RIBEIRO, T.P.; Basso, M.F.; Carvalho, M.H.; Macedo, L.L.P.; Silva, D.M.L.S.; Lourenço-Tessutti, I.T.; Oliveira-Neto, O.B.; Romano, E.; Lucena, W.A.; Silva, M.C.M.; Tripode, B.M.D.; Abreu-Jardin, T.P.F.; Miranda, J.E.; Alves-Ferreira, M.; Morgante, C.V.; Grossi-de-Sa, M.F. (2020). Stability and tissue-specific Cry10Aa overexpression improves cotton resistance to the cotton boll weevil. Biotechnology Research & Innovation , v. 3, p. 15. https://doi.org/10.1016/j.biori.2019.12.003 2019 BASSO, A.M.M.; Castro, R.J.A.; Castro, T.B.; Guimaraes, H.I.; Polez, V.L.P.; Carbonero, E.R.; Pomin, V.H.; Hoffmann, C.; Grossi-de-Sa, M.F. ; Tavares, A.H.; Bocca, A.L. (2019). Immunomodulatory activity of β-glucan-containing exopolysaccharides from Auricularia auricular in phagocytes and mice infected with Cryptococcus neoformans . Medical Mycology , v. 58(2), p. 227-239. https://doi.org/10.1093/mmy/myz042 BASSO, M.F.; Ferreira, P.C.G.; Kobayashi, A.K.; Harmon, F.G.; Nepomuceno, A.L.; Molinari, H.B.C.; Grossi-de-Sa, M.F. (2019). MicroRNAs and new biotechnological tools for its modulation and improving stress tolerance in plants. Plant Biotechnology Journal , v. 17(8), p. 1482-1500. https://doi.org/10.1111/pbi.13116 FIGUEIREDO, L.H.M.; Vasconcellos, A.G.; Prado, G.S.; Grossi-de-Sa, M.F. (2019). An overview of intellectual property within agricultural biotechnology in Brazil. Biotechnology Research & Innovation , v. 3(1), p. 69-79. https://doi.org/10.1016/j.biori.2019.04.003 FREITAS, E.O.; Paes-Melo, B.; Lourenço-Tessutti, I.T.; Arraes, F.B.M.; Amorim, R.M.S.; Lisei-de-Sa, M.E.; Costa, J.A.; Leite, A.G.B.; Faheem, M.; Ferreira, M.A.; Morgante, C.V.; Fontes, E.P.B.; Grossi-de-Sa, M.F. (2019). Identification and characterization of the GmRD26 soybean promoter in response to abiotic stresses: potential tool for biotechnological application. BMC Biotechnology , v. 19(1), p. 79. https://doi.org/10.1186/s12896-019-0561-3 GROSSI-DE-SA, M.; Petitot, A.S.; Xavier, D.A.; Lisei-de-Sa, M.E.; Mezzalira, I.; Beneventi, M.A.; Martins, N.F.; Baimey, H.K.; Albuquerque, E.V.S.; Grossi-de-Sa, M.F. ; Fernandez, D. (2019). Rice susceptibility to root-knot nematodes is enhanced by the Meloidogyne incognita MSP18 effector gene. Planta , v. 250, p. 1215-1227. https://doi.org/10.1007/s00425-019-03205-3 HABIBI, P.; Henry, D.; Soccol, C.R.; Grossi-de-Sa, M.F. (2019). The potential of plant systems to break the HIV-TB link. Plant Biotechnology Journal , v. 17(10), p. 1868-1891. https://doi.org/10.1111/pbi.13110 IBARRA, L.N.; Alves, A.N.O.A.; Antonino, J.D.; Prado, G.S.; Pinto, C.E.M.; Soccol, C.R.; Vasconcelos, E.A.R.; Grossi-de-Sa, M.F. (2019). Enzymatic activity of a recombinant β-1,4-endoglucanase from the Cotton Boll Weevil ( Anthonomus grandis ) aiming second generation ethanol production. Scientific Reports , v. 9, p. 19580. https://doi.org/10.1038/s41598-019-56070-1 MATTOS, V.S.; Mulet, K.; Cares, J.E.; Gomes, C.B.; Fernandez, D.; Grossi-de-Sa, M.F. ; Carneiro, R.M.D.G.; Castagnone-Sereno, P. (2019). Development of diagnostic SCAR markers for Meloidogyne graminicola, M. oryzae , and M. salasi associated with irrigated rice fields in Americas. Plant Disease , v. 103, p. 83-88. https://doi.org/10.1094/PDIS-12-17-2015-RE MOTA, A.P.Z.; Oliveira, T.N.; Vinson, C.C.; Williams, T.C.R.; Costa, M.M.C.; Araujo, A.C.G.; Danchin, E.G.J.; Grossi-de-Sa, M.F. ; Guimaraes, P.M.; Brasileiro, A.C.M. (2019). Contrasting effects of wild Arachis dehydrin under abiotic and biotic stresses. Frontiers in Plant Science , v. 10, p. 497. https://doi.org/10.3389/fpls.2019.00497 NORIEGA-VASQUEZ, D.D.; Arias, P.L.; Barbosa, H.R.; Arraes, F.B.M.; Ossa, G.A.; Villegas, B.; Coelho, R.R.; Albuquerque, E.V.S.; Togawa, R.C.; Grynberg, P.; Wang, H.; Vélez, A.M.; Arboleda, J.W.; Grossi-de-Sa, M.F. ; Silva, M.C.M.; Valencia-Jiménez, A. (2019). Transcriptome and gene expression analysis of three developmental stages of the coffee berry borer, Hypothenemus hampei . Scientific Reports , v. 9(1), p. 12804. https://doi.org/10.1038/s41598-019-49178-x PAIXAO, J.F.R.; Gillet, F.X.; Ribeiro, T.P.; Bournaud, C.; Lourenço-Tessutti, I.T.; Noriega-Vasquez, D.D.; Paes-Melo, B.; Almeida-Engler, J.; Grossi-de-Sa, M.F. (2019). Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a Histone AcetylTransferase. Scientific Reports , v. 9(1), p. 8080. https://doi.org/10.1038/s41598-019-44571-y PRADO, G.S.; Bamogo, P.K.A.; Abreu, J.A.C.; Gillet, F.X.; Santos, V.O.; Silva, M.C.M.; Brizard, J.P.; Bemquerer, M.P.; Bangratz, M.; Brugidou, C.; Sérémé, D.; Grossi-de-Sa, M.F. ; Lacombe, S. (2019). Nicotiana benthamiana is a suitable transient system for high-level expression of an active inhibitor of cotton boll weevil α-amylase. BMC Biotechnology , v. 19(1), p. 15. https://doi.org/10.1186/s12896-019-0507-9 SANTOS, CRISTIANE; Nogueira, F.C.S.; Domont, G.B.; Fontes, W.; Prado, G.S.; Habibi, P.; Santos, V.O.; Oliveira-Neto, O.B.; Grossi-De-Sá, M.F. ; Jorrín-Novo, J.V.; Franco, O.L.; Mehta, A. (2019). Proteomic analysis and functional validation of a Brassica oleracea Endochitinase involved in resistance to Xanthomonas campestris. Frontiers in Plant Science , v. 10, p. 414. https://doi.org/10.3389/fpls.2019.00414 2018 BOURNAUD, C.; Gillet, F.X.; Murad, A.M.; Bresso, E.; Albuquerque, E.V.S.; Grossi-de-Sa, M.F. (2018). Meloidogyne incognita PASSE-MURAILLE (MiPM ) gene encodes a cell-penetrating protein that interacts with the CSN5 subunit of the COP9 signalosome. Frontiers in Plant Science , v. 9, p. 904. https://doi.org/10.3389/fpls.2018.00904 HABIBI, P.; Soccol, C.R.; Okeefe, B.R.; Krumpe, L.R.H.; Wilson, J.; Macedo, L.L.P.; Faheem, M.; Santos, V.O.; Prado, G.Z.; Botelho, M.A.; Lacombe, S.; Grossi-de-Sa, M.F. (2018). Gene-silencing suppressors for high-level production of the HIV-1 entry inhibitor griffithsin in Nicotiana benthamiana. Process Biochemistry , v. 70, p. 45-54. https://doi.org/10.1016/j.procbio.2018.04.006 MATTOS, V. S.; Mulet, K.; Cares, J. E.; Gomes, C. B.; Fernandez, D.; Grossi-de-Sa, M. F.; Carneiro, R. M. D. G.; Castagnone-Sereno, P. (2018). Development of diagnostic SCAR markers for Meloidogyne graminicola, M. oryzae, and M. salasi associated with irrigated rice fields in Americas. Plant Disease, v. 103, p. 88-83. https://doi.org/10.1094/PDIS-12-17-2015-RE NARDELI, S.M.; Artico, S.; Aoyagi, G.M.; Moura, S.M.; Franca-Silva, T.; Grossi-de-Sa, M.F. ; Romanel, E.; Alves-Ferreira, M. (2018). Genome-wide analysis of the MADS-box gene family in polyploid cotton (Gossypium hirsutum ) and in its diploid parental species (Gossypium arboreum and Gossypium raimondii ). Plant Physiology and Biochemistry , v. 127, p. 169-184. https://doi.org/10.1016/j.plaphy.2018.03.019 SILVA, M.S.; Arraes, F.B.M.; Campos, M.A.; Grossi-de-Sa, M.; Fernandez, D.; Cândido, E.S.; Cardoso, M.H.; Franco, O.L.; Grossi-de-Sa, M.F. (2018). Review: potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. Plant Science , v. 270, p. 72-84. https://doi.org/10.1016/j.plantsci.2018.02.013 2017 ALBUQUERQUE, E.V.S.; Petitot, A.S.; Silva, J.P.; Grossi-de-Sa, M.F. ; Fernandez, D. (2017). Early responses of coffee immunity-related genes to root-knot nematode infection. Physiological and Molecular Plant Pathology , v. 100, p. 142-150. https://doi.org/10.1016/j.pmpp.2017.09.001 ALMEIDA-GARCIA, R.; Macedo, L.L.P.; Cabral, D.N.; Gillet, F.X.; Pinto, C.E.M.; Faheem, M.; Basso, A.M.M.; Silva, M.C.M.; Grossi-de-Sa, M.F. (2017). Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis. PLoS One , v. 12(12), p. e0189600. https://doi.org/10.1371/journal.pone.0189600 ANTONINO, J.D.; Pierre, O.; Coelho, R.R.; Grossi-de-Sa, M.F. ; Engler, G.; Almeida-Engler, J. (2017). Application of nuclear volume measurements to comprehend the cell cycle in root-knot nematode-induced giant cells. Frontiers in Plant Science , v. 8, p. 961. https://doi.org/10.3389/fpls.2017.00961 GILLET, F.X.; Almeida-Garcia, R.; Macedo, L.L.P.; Albuquerque, E.V.S.; Silva, M.C.M.; Grossi-de-Sa, M.F. (2017). Investigating engineered ribonucleoprotein particles to improve oral RNAi delivery in crop insect pests. Frontiers in Physiology , v. 8, p. 1-14. https://doi.org/10.3389/fphys.2017.00256 GILLET, F.X.; Bournaud, C.; Antonino, J.D.; Grossi-de-Sa, M.F. (2017). Plant-parasitic nematodes: towards understanding molecular players in stress responses. Annals of Botany , v. 119, p. 260-775. https://doi.org/10.1093/aob/mcw260 HABIBI, P; Prado, G.S.; Pelegrini, P.B.; Hefferson, K.L.; Soccol, C.R.; Grossi-de-Sa, M.F. (2017). Optimization of inside and outside factors to improve recombinant protein yield in plant. Plant Cell Tissue and Organ Culture , v. 130, p. 449-467. https://doi.org/10.1007/s11240-017-1240-5 LISEI-DE-SA, M.E.; Arraes, F.B.M.; Brito, G.; Beneventi, M.A.; Lourenço-Tessutti, I.T.; Basso, A.M.M.; Amorim, R.M.S.; Silva, M.C.M.; Faheem, M., Oliveira, N.G.; Mizoi, J.; Yamaguchi-Shinozaki, K.; Grossi-de-Sa, M.F. (2017). AtDREB2A-CA influences root architecture and increases drought tolerance in transgenic cotton. Agricultural Sciences , v. 8(10), p. 1195-1225. https://doi.org/10.4236/as.2017.810087 MOURA, S.M.; Artico, S.; Lima, C.; Nardeli, S.M.; Berbel, A.; Oliveira-Neto, O.B.; Grossi-de-Sa, M.F. ; Ferrándiz, C.; Madueño, F.; Alves-Ferreira, M. (2017). Functional characterization of AGAMOUS-subfamily members from cotton during reproductive development and in response to plant hormones. Plant Reproduction, v. 30(1), p. 19-39. https://doi.org/10.1007/s00497-017-0297-y RAMOS, C.R.; Vieira, P.; Antonino, J.D.; Martin-Jimenez, C.; De-Veylder, L.; Cazareth, J.; Engler, G.; Grossi-de-Sa, M.F. ; Almeida-Engler, J. (2017). Exploiting cell cycle inhibitor genes of the KRP family to control root-knot nematode induced feeding sites in plants. Plant, Cell and Environment , v. 40, p. 1174-1188. https://doi.org/10.1111/pce.12912 RIBEIRO, T.P.; Arraes, F.B.M.; Lourenço-Tessutti, I.T.; Silva, M.S.; Lisei-de-Sa, M.E.; Lucena, W.A.; Macedo, L.L.P.; Lima, J.N.; Amorim, R.M.S.; Artico, S.; Alves-Ferreira, M.; Silva, M.C.M.; Grossi-de-Sa, M.F. (2017). Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil. Plant Biotechnology Journal , v. 15(8), p. 997-1009. https://doi.org/10.1111/pbi.12694 2016 OLIVEIRA, R.S.; Oliveira-Neto, O.B.; Moura, H.F.; Macedo, L.L.P.; Arraes, F.B.M.; Lucena, W.A.; Lourenço-Tessutti, I.T.; Barbosa, A.A.D.; Silva, M.C.M.; Grossi-de-Sa, M.F. (2016). Transgenic cotton plants expressing Cry1Ia12 toxin confer resistance to fall armyworm (Spodoptera frugiperda ) and cotton boll weevil (Anthonomus grandis ). Frontiers in Plant Science , v. 7, p. 165. https://doi.org/10.3389/fpls.2016.00165 LACERDA, A.F.; Pelegrini, P.B.; Oliveira, D.M.; Vasconcelos, E.A.; Grossi-de-Sa, M.F. (2016). Anti-parasitic peptides from arthropods and their application in drug therapy. Frontiers in Microbiology , v. 7, p. 91. https://doi.org/10.3389/fmicb.2016.00091 COELHO, R.R.; Antonino, J.D.; Firmino, A.A.P.; Macedo, L.L.P.; Fonseca, F.C.A.; Terra, W.R.; Engler, G.; Almeida-Engler, J.; Silva, M.C.M.; Grossi-de-Sa, M.F . (2016). Vitellogenin knockdown strongly affects cotton boll weevil egg viability but not the number of eggs laid by females. Meta Gene , v. 9, p. 173-80. https://doi.org/10.1016/j.mgene.2016.06.005 GUIMARAES-DIAS, F.; Neves-Borges, A.C.; Conforte, A.J.; Giovanella-Kampmann, L.; Ferreira, A.V.J.; Amorim, R.M.S.; Beneventi, M.A.; Lisei-de-Sa, M.E.; Mesquita, R.O.; Rodrigues, F.A.; Nepomuceno, A.L.; Romano, E.; Loureiro, M.E.; Grossi-de-Sa, M.F. ; Alves-Ferreira, M. (2016). Differential impact of acclimation and acute water deprivation in the expression of key transcription factors in soybean roots. Plant Molecular Biology Reporter , v. 34, p. 1167-1180. https://doi.org/10.1007/s11105-016-0993-z VILLETH, G.R.; Carmo, L.S.; Silva, L.P.; Santos, M.F.; Oliveira-Neto, O.B.; Grossi-de-Sa, M.F. ; Ribeiro, I.S.; Dessaune, S.N.; Fragoso, R.R.; Franco, O.L.; Mehta, A. (2016). Identification of proteins in susceptible and resistant Brassica oleracea responsive to Xanthomonas campestris pv. campestris infection. Journal Proteomics , v. 143, p. 278-285. https://doi.org/10.1016/j.jprot.2016.01.014 PATENTS HEMERLY, A.S.; Cavalcanti, P.F.; Gong, P.; Nelissen, H.; Inze, D.; Grossi-de-Sa, M.F. ; Basso, M.F.; Morgante, C.V.; Lisei-de-Sa, M.E. Method for promoting an increase in plant biomass, productivity, and drought resistance. US 2020/0347399 A1 . Deposit: May 4, 2020. Publication: November 5, 2020. GROSSI-DE-SA, M.F. ; Silva, M.C.M.; Fonseca, F.C.A.; Macedo, L.L.P.; Lourenco, I.T.; Albuquerque, E.V.S. Aparato e método de criação de larvas de insetos em laboratório. BR 1020130331120 B1 . Deposit: December 20, 2013. Patent granted: November 24, 2020. GROSSI-DE-SA, M.F. ; Oliveira, G.R.; Silva, M.C.M.; Rocha, T.L.; Magalhaes, M.T.Q. Molécula de ácido nucléico isolada, construção gênica, vetor, célula transgênica, método para obtenção de uma célula e de uma planta transgênica. PI 0906128-2 B1 . Deposit: July 24, 2009. Patent granted: March 17, 2020. GROSSI-DE-SA, M.F. ; Macedo, L.L.P.; Silva, M.C.M.; Almeida-Garcia, R.; Silva, L.P.; Vila, A. Pesticide. WO 2020/007450 A1 . Deposit: July 7, 2018, Publication: January 9, 2020. GROSSI-DE-SA, M.F. ; Macedo, L.L.P.; Pinto, C.E.M.; Leite, A.G.B.; Silva, M.C.M.; Lourenço-Tessutti, I.T.; Morgante, C.V. Método para produzir planta resistente a inseto praga e moléculas de ácido nucleicos utilizado para obtenção de tal planta através de dsRNAs relacionados a ecdise. PI 102020004312-9 . Deposit: March 3, 2020. ROCHA, T.L.; Evaristo, R.G.S.; Grossi-de-Sa, M.F. ; Silva, M.C.M.; Polez, V.L.P.; Roessner, U.; Bacic, T. Nematotoxic composition of synergistic effect, use of a nematotoxic composition of synergistic effect. US 9750247 B2, CN 105007725 B . Deposit: December 26, 2013 (US and CH). Patent granted: September 5, 2017 (US) and April 4, 2019 (CH). MACEDO, L.L.P.; Grossi-de-Sa, M.F. ; Silva, M.C.M.; Almeida-Garcia, R.; Mendes, R.A.G.; Albuquerque, E.V.S. Increasing the efficiency of supression of gene expression by means of the use of RNA molecules with a stabilized structure. BR 10201700690-4 A2, WO 2018/184083 A1. Deposit: April 4, 2017 (BR) and March 29, 2018 (US). Publication: October 30, 2018 (BR) and November 11, 2018 (US). GROSSI-DE-SA, M.F. ; Silva, M.C.M.; Del-Sarto, R.P.; Rocha, T.L. Mutantes de inibidores de alfa amilases isolados de Phaseolus vulgaris com propriedades de controlar insetos-praga, composições contendo tais mutantes e métodos de obtenção dos mesmos e de linhagens transgênicas. PI 1102841-6 . Deposit: June 8, 2011. Patent granted: November 26, 2018. GROSSI-DE-SA, M.F. ; Coelho, R.R.; Firmino, A.A.P.; Macedo, L.L.P; Silva, M.C.M.; Lourenço-Tessutti, I.T. Método e composições para controle de insetos-praga em plantas por meio do silenciamento de genes da família da quintina sintase e da vitelogenina bem como alternativamente pela expressão do gene de uma toxina Cry. BR 102013032649-6 A2 . Deposit: December 18, 2013. Publication: February 10, 2016. SOUZA, D.S.L.; Silva, M.C.M.; Grossi-de-Sa, M.F. ; Evaristo, R.G.S.; Rocha, T.L.; Bacic, T.; Roessner, U.; Polez, V.L.P. Composição nematotóxica de efeito sinérgico, uso de composição nematotóxica de efeito sinérgico. BR 10201203314-6 A2 . Deposit: December 26, 2012. Patent granted: August 26, 2014. MESSENBERG, P.G.; Grossi-de-Sa, M.F. Métodos para detecção e identificação de Curtobacterium flaccumfaciens pv flaccumfaciens em uma amostra biológica e método de certificação de sementes. PI 9806477-0 . Deposit: June 23, 1998. Patent granted: April 29, 2014. GROSSI-DE-SA, M.F. ; Silva, M.C.M.; Macedo, L.L.P.; Firmino, A.A.P.; Coelho, R.R.; Lourenço-Tessuti, I.T. Método e composições para controle genético de insetos-praga em plantas de algodão através do silenciamento de genes de quitina sintases. BR 102012033539-5 A2 , US 10182571 B2 and WO 2014/100879 A2 . Deposit: December 28, 2012 (BR), December 27, 2013 (US) and June 27, 2013 (WO). Publication: August 18, 2015 (BR), January 22, 2019 (US) and January 3, 2014 (WO). GROSSI-DE-SA, M.F. ; Silva, M.C.M.; Gomes-Jr, J.E.; Lourenço-Tessuti, I.T.; Macedo, L.P.P.; Lucena, W.A.; Fonseca, F.C.A. Moléculas variantes sintéticas de toxinas Cry1Ia12 com propriedades de controlar insetos-praga, composições contendo tais mutantes e método de utilização dos mesmos. WO 2014-100880 A3 . Deposit: 02/12/2012. Publication: July 3, 2014. GROSSI-DE-SA, M.F. ; Romano, E.; Fragoso, R.R.; Silva, M.C.M.; Ferreira, A.V.J.; (2013). Cassete de expressão para indução de resistência a múltiplas espécies de nematóides em plantas, métodos e plantas que o utilizam. WO 2014/197951 A2 . Deposit: June 11, 2013. Publication: December 18, 2014. GROSSI-DE-SA, M.F. ; Firmino, A.A.P.; Silva, M.C.M.; Martins-de-Sa, D.; Coelho, R.R.; Macedo, L.L.P.; Lourenço-Tessuti, I.T. Método e composições para controle genético de insetos-praga em plantas de algodão através do silenciamento de genes de lacases. WO 2014/100878 A3. Deposit: December 27, 2013. Publication: July 3, 2014. ALVES-FERREIRA, M.; Grossi-de-Sa, M.F. ; Lambret, J.; Nardeli, S.M.; Artico, S. Compositions and method for modifying gene expression using a promoter of genes specific to plant flowers and fruit. WO 2014/000075 A2 . Deposit: June 27, 2012. Publication: January 3, 2014. GROSSI-DE-SA, M.F. ; Guimaraes, L.M.; Batista, J.A.N.; Viana, A.A.B.; Fragoso, R.R.; Rocha, T.L. Composições e métodos para modificar a expressão de genes usando o promotor do gene da proteína de conjugação à ubiquitina de plantas de algodoeiro. PI 0701230-6 , US 2013/0152226 A1 . Deposit: February 5, 2007 (BR) and February 19, 2013 (US). Patent granted: June 26, 2018 (BR) and June 13, 2013 (US). OLIVEIRA, G.R.; Marra, B.M.; Grossi-de-Sa, M.F. Processo de uso industrial e agronômico de ácidos graxos e/ou borra de algodão e/ou borra de soja e/ou borra de mamona e demais borras e seus componentes, como molécula (s), com efeito, nematicida e/ou nematostático e/ou de controle de nematóides. BR 102012007851 A2 . Deposit: April 5, 2012. Publication: November 24, 2012. ALVES-FERREIRA, M.; Waltenberg, F.P.C.; Romano, E.; Grossi-de-Sa, M.F. Utilização do gene homeobox de café cahb12 na produção de plantas transgênicas mais tolerantes ao déficit hídrico e estresse salino. WO 2012/061911 A9 . Deposit: November 8, 2011. Publication: May 18, 2012. CARLINI, C.R.R.S.; Ferreira, C.T.S.; Moraes, M.G.; Mulinari, F.; Silva, M.A.F.; Grossi-de-Sa, M.F. ; Kurtenbach, E. Toxina praguicida, construção gênica e método de controle de pragas. PI 0403435-0 A . Deposit: April 8, 2004. Publication: August 1, 2006. SCHERRER, K.; Grossi-de-Sa, M.F. Monoclonal antibodies against prosomal proteins (covering any p-Mab against prosomes). EP 0434670 B1 . Deposit: August 29, 1986. Publication: June 11, 1997. SCHERRER, K.; Grossi-de-Sa, M.F. Monoclonal antibodies against prosomal proteins (covering p27k and p31k p-Mabs). EP 0219368 B1 . Deposit: August 29, 1986. Publication: March 11, 1992.

  • Events-from-2022

    Scientific Events 27 - 30 May 2025 Simpósio Brasileiro de Genética Molecular de Plantas Exploring Innovation in Plat Genetics fora Sustanible Agriculture Read More 19 - 22 October 2025 8th Brazilian Biotechnology Congress The advances in biotechnology, whose full development relies on the elucidation of the main tenets of biology, plays an increasingly crucial role in food security, environmental remediation, sustainable bio-based industry and public health. Read More

  • Dr. Marcio Alves-Ferreira talked about his latest paper in Plant Biology 2022 Conference

    < Back Dr. Marcio Alves-Ferreira talked about his latest paper in Plant Biology 2022 Conference From Plant Biology 2022: Plants vs Insects Session Recap At Plant Biology 2022, a varied group of speakers presented the latest advances from one of the oldest wars that takes place in our world: Plants versus insects, during the “Plants Versus Insects” concurrent symposium on Tuesday, July 12, 2022. Attendees heard news from multiple front lines: cotton, cowpea, and Arabidopsis, and I served as a correspondent to share the details of this gathering with the global plant science community. Let’s go! Cotton vs Cotton Boll Weevil During the first talk, Chair Dr. Marcio Alves-Ferreira , from the Universidade Federal do Rio de Janeiro, Brazil, talked about his latest paper in Current Plant Biology . They aimed to identify molecular players mediating the defense response of cotton ( Gossypium spp) to the Cotton Boll Weevil (CBW, Anthonomus grandis ), an insect pest that attacks reproductive structures causing severe loss in cotton fiber production. Plants identify herbivores through Herbivore-Associated Molecular Patterns (HAMPs), such as molecules present in insect oral secretions (a combination of regurgitated material from the gut and saliva). HAMPs are recognized by membrane receptors that can activate Mitogen-Activated Protein Kinases (MAKPs), that participate in the transduction of the signal leading to the establishment of the defense response (see Snoeck et al., 2022 ). The series of events that take place from the recognition of patterns to the set-up of the inducible defenses is collectively known as Pattern-triggered immunity (PTI). PTI has been deeply studied in the interaction between plants and pathogens (for more information and the newest research on the topic, see more from Plant Biology 2022 via Plant Biology EXTENDED, coming soon!). Dr. Alves-Ferreira and collaborators found that different CBW extracts, such as oral secretions or egg extracts, were able to activate MAPKs in cotton and in Arabidopsis. Interestingly, the activation of MAPKs was independent of previously characterized receptors required for the defense against bacteria or fungus. Together, their results showed that HAMPs from CBW activate PTI, although the receptors involved remain unknown ( de Moura et al., 2022 ). Dr. Alves-Ferreira also mentioned that they are working on the analysis of a RNAseq data from cotton leaves infested with CBW in order to keep dinging in the molecular pathways behind the cotton-CBW battle. Stay alert for news! Know Your Weapons: Not All Jasmonates are the Same! The next talk was about one of my favorite topics: Jasmonates. For those who haven’t had the chance to talk to me (maybe the lucky ones, he!), jasmonates are a group of lipid-derived compounds that regulate the balance between growth and defense ( Wasternack and Feussner, 2018 ). Ariel Sorg, a PhD student from the Gilroy lab (University of Wisconsin-Madison, USA), found that specific jasmonates are required for different responses, i.e., some jasmonates trigger defenses against herbivores, while others are required for growth repression. By the way, I must mention that they have designed a robot that regularly touches plants to induce stress responses. Besides being super cool, the robot could mimic signals derived from flying insects casually touching leaves. Cowpea vs Lepidoptera (with some help from Nicotiana benthamiana and Manduca sexta ) Inceptin, a HAMP present in Lepidoptera oral secretions ( Schmelz et al., 2006 ; Schmelz et al., 2007 ), enhance the expression of defense genes in cowpea ( Vigna unguiculata ), such as Kunitz trypsin inhibitors (KTI). KTI are anti-insect proteins that affect the digestion of leaf tissues in the larvae guts, and therefore, are detrimental for growing. KTIs contain a variable number of cysteines that form disulfide bonds required for protein structure and stability ( Blow et al., 1974 ). PhD student Natalia Guayazan Palacios presented her work with the Steinbrenner lab (University of Washington, USA) where they designed a heterologous system to study whether the number of cysteines can also impact KTI anti-herbivore function. They expressed different versions of KTIs in N. benthamiana and performed bioassays with M. sexta . After letting the caterpillars feed on the leaves, the researchers recorded the growth of the caterpillars, and then extracted proteins from different sections of the digestive system of the insects. They followed the presence of KTIs and, as control, peroxidases (inceptin-induced defense proteins with a different activity) by western blot. Only KTIs were found in the guts, which is consistent with their anti-digestive function. Therefore, the N. benthamiana-M. sexta system can be a powerful tool to test protease inhibitors as potential direct defenses. And, with respect to the role of the cysteines in KTI activity, I think we may have interesting news soon! Plants vs Aphids vs Ladybugs To keep in line with the multiple advantages of using N. benthamiana as tool, I will continue with the talk of Dr. Georg Jander from the Boyce Thompson Institute, USA. RNA interference (RNAi) technologies are emerging as a powerful tool to control pests. They rely on engineering a plant to express a RNAi that targets insect genes needed for growth or development. However, if the RNAi is not species-specific, it may damage beneficial insects. Dr. Jander and collaborators used N. bentamiana plants expressing a RNAi against green peach aphids ( Myzus persicae ), and evaluate if the RNAi was transmitted to, and could negatively affect ladybugs ( Coccinella septempunctata ) that prey on the aphids. For those like me who love ladybugs: don’t worry! Even if RNAi was found in the ladybugs, it can be designed in a way that is only detrimental to aphids. Phew! Arabidopsis vs Aphids Finally, also belonging to the aphid world, there was the presentation of Dr. Keyan Zhu-Salzman (Texas A&M University, USA), where she explained a recent paper from her lab about how plants coordinate defenses with their daily rhythm. Circadian clock-regulated defenses allow plants to anticipate pest attacks and allocate resources at the most beneficial time of the day, thus minimizing metabolic cost. A previous report found that CIRCADIAN CLOCK-ASSOCIATED1 (CCA1), a well-known central circadian clock regulator, link daily cycles with defenses against Trichoplusia ni caterpillars ( Goodspeed et al., 2012 ). Dr. Zhu-Salzman and her team found that although a functional circadian clock confer resistance to green peach aphids, CCA1 over expression lines, that lack circadian rhythm, were more resistant to aphid feeding. To solve the mystery behind this apparent contradiction, they performed in-depth data mining using published transcriptomic data sets and found that CCA1 regulates indolic glucosinolates (iGS) biosynthesis. Their results showed that CCA1 has a role in both circadian dependent and independent defenses ( Lei et al., 2019 ). Source: ASPN

  • Opportunities | inctplantstress

    Find vacancies and opportunities for you to work with us. Scholarship Opportunities Open opportunities 01 Opportunity Publication date: January 09th, 2024 Título da candidatura: Analista de pesquisa | Bolsista Transformação genética de soja Oportunidade de bolsa para área de Engenharia Genética. Procuramos profissionais criativos, com visão inovadora, com experiência em biotecnologia e biologia molecular. Responsibilidades Conduzir a transformação genética de soja para resistência a insetos; Caracterização molecular de eventos transgênicos, a nível de DNA, RNA e proetína; Realizar análises de expressão gênica (RNAm e proteína); Transformação de bactérias e células competentes; Elaboração e publicação de artigos e outros conteúdos sobre Biotecnologia e Biologia Molecular. Qualificação Graduação em Ciencias Biológicas, Agronomia ou Biotecnologia; Mestrado em biologia molecular, biologia celular, fisiologia, biotecnologia ou áreas afins; Experiência em transformação genética de plantas, caracterização molecular, cultura de tecidos, RTqPCR; Domínio da língua inglesa (leitura e escrita); Disponibilidade para trabalho presencial 40 horas semanais em Brasília, DF; Boas habilidades de escrita; Conhecimento no pacote Microsoft Office; Disposto a aprender sobre novas tecnologias; Criatividade e proatividade. Período: 12 meses Início: Março de 2024 Valor da bolsa: R$ 4.000,00 Local: Laboratório de Interação Molecular Planta-Praga | EMBRAPA Recursos Genéticos e Biotecnologia, Brasília (DF) Prazo de submissão: 30 de janeiro de 2024 Documentos necessários: Carta de motivação (descrevendo principais competências, experiências e objetivos) e link para o CV Lattes atualizado. Enviar candidatura para: inctplantstressbiotech@gmail.com Assunto: Bolsa Transformação soja 02 Opportunity Publication date: January 18th, 2024 Título do trabalho: Bolsa de Pós Doutorado visando apoiar projeto de Desenvolvimento de Diagnósticos Moleculares e Sorológicos do Tipo Point of Care. Responsabilidades: Executar atividades de desenvolvimento e produção de anticorpos Policlonais e Monoclonais, ensaios de ELISA, RT-PCR, qPCR (PCR em tempo Real), Desenvolver teste do Tipo Point of Care; além da produção de conteúdos técnico-científicos. Requisitos: Doutorado em Biologia Molecular, Bioquímica, Biologia Celular, Imunologia e áreas afins. Experiência requerida: Biologia molecular e Biotecnologia Período : 24 meses Valor da bolsa: R$ 6.900,00 Local: EMBRAPA Recursos Genéticos e Biotecnologia, Brasília (DF) Prazo de submissão: Até 09 de fevereiro de 2024 Documentos necessários: Curriculo Lattes atualizado nos últmos 2 meses. Diploma de Doutorado e Histórico Escolar do Doutourado. Contato para candidatura: emanuel.abreu@embrapa.br 03 Opportunity Publication date: June 14th, 2022 Título do trabalho: Transformação de soja Responsabilidades: Transformação genética de plantas, cultura de tecidos vegetais, análises moleculares Requisitos: Mestrado em biologia molecular, biologia celular, fisiologia, biotecnologia ou áreas afins. Período : 12 meses Valor da bolsa: R$ 3.000,00 Local: LA 9 - EMBRAPA Recursos Genéticos e Biotecnologia, Brasília (DF) Prazo de submissão: 30 de junho de 2022. Documentos necessários: Carta de motivação e link para o CV Lattes atualizado. Contato para candidatura: carolina.morgante@embrapa.br 04 Opportunity Publication date: March 11 th, 2022 Título do trabalho: Cultivo de raízes do tipo "hairy roots" de espécies silvestres de Arachis Responsabilidades: Transformação genética de plantas, cultura de tecidos vegetais, análises moleculares Requisitos: Doutorado em biologia molecular, biologia celular, fisiologia, biotecnologia ou áreas afins Período: 2022-2023, renovável por mais 1 ano Valor da bolsa: R$ 4.300,00 Local: LA 5 - EMBRAPA Recursos Genéticos e Biotecnologia, Brasília (DF) Contato para candidatura: ana.brasileiro@embrapa.br 05 Opportunity Publication date: March 11 th, 2022 Título do trabalho: Edição de genes de suscetibilidade (S) e de resistência (R) em plantas compostas de soja Responsabilidades: Edição de genes (CRISPR), análises moleculares, análise de bioinformática Requisitos: Doutorado em biologia molecular, bioinformática, biologia celular Período: 2022-2023, renovável por mais 1 ano Valor da bolsa: R$ 4.300,00 Local: LA 5 - EMBRAPA Recursos Genéticos e Biotecnologia , Brasília (DF) Contato para candidatura: patricia.guimaraes@embrapa.br

Embrapa Genetic Resources and Biotechnology

+55 61 3448-4902

  • Instagram
  • LinkedIn
  • Twitter
Logotipo da Embrapa
Logotipo do CNPq
Logotipo da Capes
Logotipo da FapDF

Copyright © 2021

INCT PlantStress Biotech

All rights reserved

bottom of page